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Abstract: The paper presents an innovative approach to solving the 

problems of computer system synthesis based on genetic methods 

assisted with simulated annealing strategy. We describe algorithm 

realizations aimed to optimize resource partition and task 

scheduling, as well as the adaptation of those algorithms for 

coherent synthesis realization. We then present selected analytical 

experiments proving the correctness of the coherent synthesis 

concept and indicate its practical motivations. 
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1. Introduction 

The goal of high-level synthesis of computer systems (i.e. 

systems of type the complex of resources and operations) is 

to find an optimum solution satisfying the requirements and 

constraints enforced by the given specification of the system. 

The following criteria of optimality are usually considered: 

costs of system implementation, its operating speed, power 

consumption and dependability. A specification describing a 

computer system may be provided as a set of interactive tasks 

(processes, functions). 

The partition of the functions between hardware and software 

is the basic problem of synthesis. Such partition is 

significant, because every computer system must be realized 

as result of hardware implementation for its certain tasks. 

In the synthesis methods so far, the software and hardware 

parts were developed separately and then connected in 

process the co-called co-synthesis, which increased the costs 

and decreased the quality and reliability of the final product. 

The resources distribution is to specify, what hardware and 

software are in system and to allocate theirs to specific tasks, 

before designing execution details. 

The problems of tasks scheduling are one of the most 

significant issues occurring at the procedure synthesis of 

operating systems responsible for controlling the distribution 

of tasks and resources in computer systems. 

The objective of this research is to present the concept of 

coherent approach to the problem of system synthesis, i.e. a 

combined solution to task scheduling and resource partition 

problems. The model and approach are new and original 

proposals allowing synergic design of hardware and software 

for performing operations of the computer system. This is 

approach, which we called a par-synthesis (coherent co-

synthesis). 

This research shows the results selected of computational 

experiments for different instances of system par-synthesis 

problems proving the correctness of the coherent synthesis 

concept and shows the methods solving this problems.  

Due to the fact that synthesis problems and their 

optimizations are NP-complete we suggest meta-heuristic 

approach, i.e. genetic with simulated annealing. 

Coherent co-synthesis of computer systems, as well as 

synergic design methodology their structures and scheduling 

procedures may have practical application in developing the 

tools for automatic aided for rapid prototyping of such 

systems. 

2. Coherent synthesis of computer system 

2.1 The classical process of computer system synthesis 

The classical process co-synthesis [2], [14], [22] – hardware 

and software  – for computer system consists of the following 

stages (Fig. 1.1): 

 
 

System specification 

Resource partition Task scheduling 

Allocation of task and resource 

Resulting system 

 Fig. 1.1. The process co-synthesis 

 

1. Specification of the designed system in terms functional 

and behavioural – requirements and constraints analysis. The 

system description in an high-level language, abstracting 

from the physical implementation. 

2. Resource partition – architecture development. 

3. Task scheduling – system control development. 

4. Allocation the system functions to the architecture 

elements – generating the system modular architecture, 

control adaptation and the whole system integration. 

The system being constructed consists of hardware elements 

and software components performed by selected hardware 

modules. The system is specified by a set of requirements to 

be met. In general, each requirement may be satisfied by 

hardware elements or software components executed by 

universal processors and memories. Obviously, at this stage 

of design, one must take into account appropriate system 

constraints and criteria of optimal system operation. 

Accordingly, the key issue in the synthesis is efficient 
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partitioning of system resources due to their hardware and 

software implementation, providing fulfilment of all 

requirements and the minimum implementation cost.  

Such partitioning methodology [17] may accept, as a starting 

point, assignment of the hardware implementation to all 

system functions and further optimization of project costs, 

search for possibilities of replacing certain tasks realized by 

hardware with their software equivalents. Other methods [20] 

of the resources partitioning start with an exclusive software 

implementation and further search for implementation of 

certain tasks by hardware. In both approaches the objective is 

optimization of the implementation cost of the same tasks, 

i.e. in particular minimization of  the execution time by 

specialized hardware [3]. Obviously the requirements and 

constraints, especially those regarding time and power 

consumption, have decisive influence upon selection of 

necessary hardware components. 

The measure for an efficient implementation of a computer 

system is the degree of its modules utilization, minimized 

idle-time of its elements and maximized parallel operation of 

its elements [21].  

A non-optimum system contains redundant modules or 

modules that are excessively efficient in comparison to the 

needs defined by the tasks what, consequently, increases the 

system cost. In high-level synthesis, the optimization of the 

designed system costs, speed and power consumption is 

usually an iterative process, requiring both changes in the 

architecture and task scheduling [23]. That is, why an 

optimum system may be created as a compromise between 

the system control algorithm and its hardware organization. 

2.2 The general model for the problem of system 

synthesis 

System synthesis is a multi-criteria optimization problem. 

The starting point for constructing our approach to the issues 

of hardware and software synthesis is the deterministic theory 

of task scheduling [4], [7], [25]. The theory may serve as a 

methodological basis for multiprocessor systems synthesis.  

Accordingly, decomposition of the general task scheduling 

model is suggested, adequate to the problems of computer 

system synthesis. From the control point of view such a 

model should take into account the tasks, which may be 

either preemptable or nonpreemptable. These characteristics 

are defined according to the scheduling theory. Tasks are 

preemptable when each task can be interrupted and restarted 

later without incurring additional costs. In such a case the 

schedules are called to be preemptive. Otherwise, tasks are 

nonpreemptable and schedules nonpreemptive.  

Preemptability of tasks in our approach cannot be a feature of 

the searched schedule – as in the task scheduling model so 

far. The schedule contains all assigned tasks with individual 

attributes: preemptive, nonpreemptive. From the point of 

view of the system synthesis, the implementation of certain 

tasks from the given set must be nonpreemptible, for the 

other may be preemptible (what, in turn, influences 

significantly selection of an appropriate scheduling 

algorithm) [5]. Moreover, we wish to specify the model of 

task scheduling in a way suitable for finding optimum control 

methods (in terms of certain criteria) as well as optimum 

assignment of tasks to universal and specialised hardware 

components. Accordingly, we shall discuss the system of type 

the complex of resources and operations: 

∑  =  { R, T, C }      (1) 

where: 

R –  is the set of resources (hardware and software), 

T –  is the set of the system’s tasks (operations), 

C –  is the set of optimization criteria for the  system’s  

behaviour and structure. 

 

Resources. We assume that processor set P = {P1, P2,…, Pm} 

consists of m elements and additional resources A = { A1, 

A2,…, Ap} consist of  p elements. 

Tasks. We consider a set of n tasks to be processed with a set 

of resources. The set of tasks consists of n elements T = {T1, 

T2,…, Tn}. A feasible schedule is optimal, if its length is 

minimum and it is implemented using minimum resource 

cost.  

Each task is defined by a set of parameters: resource 

requirements, execution time, ready time and deadline, 

attribute - preemptable or nonpreemptable. The tasks set may 

contain defined precedence constraints represented by a 

digraph with nodes representing tasks, and directed edges 

representing precedence constraints. If there is at least one 

precedence constraint in a task set, we shall refer it to as a set 

of dependent tasks, otherwise they are a set of independent 

tasks.  

Optimality criteria. As for the optimality criteria for the 

system being designed, we shall assume its minimum cost, 

maximum operating speed and minimum power 

consumption. 

The proposed model may be used for defining various 

synthesis problems for optimum computer systems. 

The model of a system in our approach, [9], [11] typical for 

the theory of task scheduling, consists of a set of 

requirements (operations, tasks) and existing relationships 

between them (related to their order, required resources, 

time, readiness and completion deadlines, 

preemptability/nonpreemptability, priority etc.). The 

synthesis procedure contains the following phases: 

identification of hardware and software resources for task 

implementation, defining the processing time, defining the 

conflict-free task schedule and defining the level of resource 

co-sharing and the degree of concurrency in task 

performance. 

The synthesis has to perform the task partitioning into 

hardware and software resources. After performing the 

partition, the system shall be implemented partially by 

specialized hardware in the form of integrated circuits 

(readily available on the resources pools or designed in 

accordance to the suggested characteristics) [18]. Software 

modules of the system are generated with the use of software 

engineering tools. Appropriate processors shall be taken from 

the resource pool. Synthesis of a system may also provide a 

system control, create an interface and provide 

synchronization and communication between the tasks 

implemented by software and hardware [11]. 

The system synthesis, i.e. defining system functions, 

identifying resources, defining control should be 

implemented in synergy and be subject to multi-criteria 

optimization and verification during implementation. 

2.3  The coherent process of system synthesis 

Modeling the joint search for the optimum task schedule and 

resource partition of the designed system into hardware and 

software parts is fully justified. Simultaneous consideration 

of these problems may be useful in implementing optimum 
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solutions, e.g. the cheapest hardware structures. Synergic 

approach enables also performing of all assigned tasks with 

the minimum schedule length. With such approach, the 

optimum task distribution is possible on the universal and 

specialized hardware and defining resources with maximum 

efficiency.  

We propose the following schematic diagram of a coherent 

process of systems synthesis [10], (Fig. 1.2). The suggested 

coherent synthesis consists of the following steps:  

1. specification of requirements for the system to be 

designed and its interactions with the environment,  

2. specification of tasks, including evaluation of task 

executive parameters using available resources (e.g. 

execution times),  

3. assuming the initial values of resource set and task 

scheduling – initial resource set and task schedule 

should be admissible, i.e. should satisfy all 

requirements in a non-optimum way,  

4. task scheduling and resource partitioning,  

5. evaluating the operating speed and system cost, 

multi-criteria optimization,  

6. the evaluation should be followed by a modification 

of the resource set, a new system partitioning into 

hardware and software parts (step 4). 

Iterative calculations are executed till satisfactory design 

results are obtained – i.e. optimal (or sub-optimal) system 

structure and schedule. The designed system should be fast 

and cheap. 

3. The genetic method for coherent synthesis of 

computer system 

    This chapter presents a coherent approach to solving the 

problems of computer system synthesis based on genetic 

method assisted with simulated annealing strategy. We 

describe algorithm realizations aimed to optimize resource 

partition and task scheduling, as well as the adaptation of 

those algorithms for coherent co-synthesis realization. We 

then present selected analytical experiments proving the 

correctness of the coherent synthesis concept and indicate its 

practical motivations. Due to the fact that synthesis problems 

and their optimizations are NP-complete [6], [15] we suggest 

meta-heuristic approach, genetic with Boltzmann tournament 

selection strategy [1], [12], [24]. 

In order to eliminate solution convergence in genetic 

algorithms, we use data structures which ensure locality 

preservation of features occurring in chromosomes and 

represented by a value vector. Locality is interpreted as the 

inverse of the distance between vectors in an n-dimension 

hypersphere. Then, crossing and mutation operators are data 

exchange operations not between one-dimensional vectors 

but between fragments of hyperspheres. Thanks to such an 

approach, small changes in a chromosome correspond to 

small changes in the solution defined by the chromosome. 

The presented solution features two hyperspheres: task 

hypersphere and resource hypersphere. 

The solutions sharing the same allocations form the so-called 

clusters. The introduction of solution clusters separates 

solutions with different allocations from one another. Such 

solutions evolve separately, which protects the crossing 

operation from generating defective solutions. There are no 

situations in which a task is being allocated to a non-

allocated resource. Solution clusters define the structures of 

the system under construction (in the form of resources for 

task allocation). Solutions are the mapping of tasks allocated 

to resources and task scheduling. During evolution, two types 

of genetic operations (crossing and mutation) take place on 

two different levels (clusters and solutions).  
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Fig. 1.2 . The coherent process of computer system synthesis 

 
A population is created whose parameters are: the number of 

clusters, the number of solutions in the clusters, the task 

graph and resource library. For the synthesis purposes, the 

following criteria and values are defined: optimization 

criteria and algorithm iteration annealing criterion if solution 

improvement has not taken place, maximum number of 

generations of evolving solutions within clusters, as well as 

the limitations - number of resources, their overall cost, total 

time for the realization of all tasks, power consumption of the 

designed system and, optionally, the size of the list of the 

best and non-dominated individuals. 
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3.1 Data structures  

3.1.1 The structure ”Population”  

This structure contains information about individuals' 

population: 

 The table of clusters of solutions. 

 Hyperspheres the resources and graph of tasks. 

 Number of generation of clusters. 

 Number of generation of solutions in cluster. 

 Maximum quantity of generations of evolving solutions 

inside the clusters. 

 Criterion of stop of evolution - the maximum quantity of 

generations without improvement of solution. 

 Number of generations without obtainment of 

improvement of solution. 

 

during evolution solution.  

 Map of costs of optimization. 

 Criterion  of optimization - the maximum quantity of 

processors, maximum cost, maximum time, power 

maximum consumption. 

 Dimension the list of the best solutions. 

 Probability of crossing of individuals. The of mutation 

even probability is 1 - the probability of crossing. 

3.1.2 The structure ”Clusters of solutions”  

The structure contains the information about cluster of 

solutions possessing the same the allocation of resources: 

 Area describing the allocation of resources. 

 Total price of allocated processors. 

 Ranking of clusters ( the sum of rankings of solutions 

inside the cluster). 

Use of clusters of solutions about the same allocation has on 

aim the separating from me the solutions about different 

alokacjach. Solutions such evolve separately. In it secures 

oneself then the operation of crossing before production the 

defective solutions. It does not come to situation such that 

task be becomes attached to supply which he does not be 

allocate. 

3.1.3 The structure ” Solutions in demand”  

The structure contains the information about the outcome 

structure and functionality of architecture of system: 

 The area describing the attributing to resources the tasks. 

 The table  of optimized costs. 

 Ranking of solution (the quantity of solutions in 

population which did not dominate this solution) 

3.1.4 The structure ”Allocation of resources”  

The structure contains about allocated resources in frames of 

cluster of solutions: 

 The table of solutions about the same allocation of 

supplies. 

3.1.5  The structure ”Attributing to resources tasks”  

The behaviour of tasks describes in system ( attributing, 

schedule): 

 The table of list describing order in a row on individual 

processors tasks. Every list responds one allocated 

processor. 

 The table including the times of beginning and end of 

executing the tasks. 

 The table the describing allotment of tasks to allocated 

resource. 

3.1.6 The structure ”Graph of tasks”  

The structure contains the information about of graph of 

tasks describing the functional requirements of system: 

 Number of tasks in vice - count  

 The table of sorted nods of graph. 

 The area describing construction of graph (matrix of 

incidences)  

 The area constains sorted in order of tasks by the BFS  

algorithm. 

 The area of nods of graph. 

 

 

 

 

 

 

 

 

Fig. 3.2. The operations of crossing on different structures of 

data. Prevention of formation of defective solutions. 

 

3.1.7 The structure ”Nod of graph of tasks”  

The structre describing the nod in graph: 

 Number of nod. 

 Level in graph. 

 Predecessors' list. 

 Successors' list. 

3.1.8 The structure ”Resources”  

It contains information describing available resources: 

 Number of processors  

 Number of features describing the given processor. 

 The area of structures describing the processor. 

3.1.9 The structure ”Processor”  

It contains information describing processor: 

 Type (universal, dedicated). 

 Cost of operating memory.  

 Cost of processor. 

 The area of times of executed through this processor the 

tasks. 

 The area of power average consumptions tasks. 

3.1.10 The structure ”Global temperature”  

It contains  information describing the global temperature of 

algorithm: 

 Current temperature. 

 Ratio  of cooling. 

 Step of temperature. 

During working of algorithm, the temperature will diminish 

with function peaceably, 

 e
a x

   (2) 

where a - the ratio of cooling. The workings about step the 

algorithm of reducing the temperature the argument x be 

reduced in time. 

Solution   

cluster   

    

Crossing    
of allocations     
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3.1.11 The Structure ”Task scheduling”  

It contains the functions for scheduling of the tasks:  

 Initial scheduling, ASAP algorithm. 

 Mutation of schedule. 

 Crossing of schedule. 

 Function for the counting schedule length. 

3.1.12 Struktura ”Hiperspher the features of system”  

It contains the information the relating similarities of features 

of processors and tasks. 

 Co-ordinates of centre hiperspher. 

 Length of diameter  

 Factors hiperplane cutting hiperspher. 

 Distance of all vectors inside the hiperspher from centre. 

The structure of system is represented by file of linear tables 

of data. During it crossing it comes to exchange of data 

among tables.  It unfortunately, many problems were not it 

been possible was to describe with the help of the one 

dimension of series of data. Linear order usually forces upon 

on optimized data [8], [13]. 

 

 
Fig. 3.3. Chart of reducing the temperature of algorithm 

 

The evolutionary algorithm, to he could act skilfully, need in 

of data representing the solution structure the behaviours of 

lokalności. The exchange of data among individuals ( the 

crossing) she  should separate the information the describing 

more similar features of architecture more more seldom the 

than information the describing entirely different  features 

[19]. Small changes in genotype should answer in solution 

which genotype represents small changes.  

Putting on linear order on multidimensional information, 

wears out lokalność becomes. This problem the structure of 

data representing hipersferę in aim of solution was applied.  

The multidimensional information becomes recorded in 

figure of vector. We interpret as reverse of local distance n - 

dimension vectors inside  n - dimension hiperspher. 

 

 

 

 

 

 

 

Fig. 3.4. Two dimension hipersfera (circle). Resources be 

described by two features here, e.g. time and cost. 

 

The furthest distant from me vectors mark diameters and 

centre hyper sphere. 

Algorithm keeps two hyper sphere: 

 Task hyper sphere - two the dimensional, representing task 

graph structure. Each of the nods is defined by two 

coordinates: an indicator obtained through topological 

sorting (the tasks are “closest” if one of them is adirect 

successor of the other), and an indicator calculated from 

the BFS algorithm parallel tasks are equally distant from 

the beginning of the graph). 

 Resources hyper sphere is three-dimensiona representing 

the depedencies of resource features. Each of the 

resources may be defined by the following coordinates: 

cost, speed and power consumption. 

3.2 Partition of resources 

It is the data the graph of tasks, pool of resources as well as 

criterions of optimality. The algorithm of partition of 

resources has determine resources, which have execute all 

tasks with all criterions. 

3.2.1 Initial of algorithm  

The aim initial of algorithm is of the construction of 

architecture of system the simplest and first. The architecture 

of system must base of accessible resources and realise 

required functions and set criterions. Algorithm executes 

following steps: 

3.2.1.1 Construction of graph of tasks  

On basis of input data the structure the describing graph of 

tasks is built. The graph of tasks represents the functionality 

of system. After creation of graph,  nods be sorted. The 

topological order defines the position of tasks in graph. 

Equivalent levels become for nodes in graph. This features of 

tasks are used in scheduling algorithm. If tasks will be 

scheduling according to levels in graph then it will assure 

throwed of order constarints. The levels of tasks on following 

graph were marked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Graph of tasks - levels of tasks after topological 

sorting 

 

The searching of graph is for partition of resources the next 

step with the help of the algorithm the BFS [12]. The nodes 

of graph are assigned equivalent indices.  Indices these keep 

the information relating the is parallel of tasks in graph. The 

following drawing represents the levels of tasks formed in 

result searching the graph with assistance of BFS. 

3.2.1.2 Creation resources 

On basis of data input, the representing the accessible 

resources object be built (the processors).  Object this throws 

open the relating the resources information (the cost, the cost 

of operating memory,  times of executing on processors the 
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tasks, averages the power consumptions, the relative speed of 

processor, power relative consumption). 

3.2.1.3 Creation population  

They are the parameters of population:  

 Number of clusters in population.  

 Number of solutions in clusters,  

 Graph  of tasks - the functionality. 

 Accessible resources. 

 Criterion of alloy - defines the quantity of loop of 

algorithm when the improvement of solution did not 

happen. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. The indices of nodes after searching the grafu by the 

BFS 

 

 Map of costs - defines, which of criterions of optimization 

will be the taken into account during finding the optimum 

solution. 

 Regard for universal processors the costs of operating 

memory during optimizing cost. 

 Maxiumum number of generations of evolving solutions 

inside the clusters. 

 Criterions of optimization - the maximum number of 

processors, maximum cost, maximum time, power 

maximum consumption. 

 Size the best individuals' letters. Nodominated and the 

best individuals to this list be recorded. They longer list 

this algorithm can remember suddenly more individuals. 

List behaves how queue FIFO. 

The created objects of clusters and solutions in clusters, and 

also objects hypersphere: processors and graph of tasks. The 

created also the object of global temperature of algorithm. 

The global algorithm "temperature" is initialized at this stage 

as well. 

3.2.1.4 Initialization hypersphere  

Two hypersphere be created: processors and graph of tasks. 

The hypersphere of processors has since 1 to 3 dimensions. 

The dimension depends from number of optimized features 

(cost, time, power consumption). Hypersphere for the graph 

of tasks is two dimension. 

3.2.1.5 Definitions of hyper sphere 

 Filling multi-dimensional vectors with data defining a 

given object (resources, tasks). 

 Calculating the diameters of the hyper spheres, i.e. the 

distance between the two most remote points and 

determining the hyper sphere center on the basis of the 

extreme coordinate. 

3.2.1.6 Population initialization 

 Clusters and solutions are initialized randomly. 

 For every task, a resource capable of completing the task 

is selected. 

 If the resource is allocated, the algorithm proceeds to the 

next task. 

 A resource capable of completing the task is selected and 

they are allocated. 

3.2.1.7 Initializing the allocation of tasks to resources 

 A vector of resources for allocation is taken for each task. 

 Resource type and number are randomly assigned to the 

tasks. 

 Task scheduling by the ASAP (As Soon As Possible) 

algorithm is initialized - eliminates the violations of 

sequence limitations. 

3.2.1.8 Solution evaluation 

 The following are calculated: resource cost, task 

completion time and power consumption; the cost is the 

sum of allocated resources’ costs, the time of completed 

tasks is the time of completing the tasks on all allocated 

resources, power consumption is the sum of power inputs 

taken by selected resources. 

 If for an individual representing a solution any of the 

optimized criteria exceeds the maximum value acceptable, 

the individual is punished and the survival chances of a 

punished individual diminish considerably. 

 As the result of the above operations, we obtain a vector 

containing the values of optimized criteria (time, cost, 

power consumption). 

 A solution ranking is determined (the rating of a given 

solution is the number of solutions in a population which 

do not dominate the solution). 

 A solution is dominated if each of its costs is lesser from 

or equal to the costs of the dominant solution (for 

optimization in the Pareto sense) [5]. 

3.2.1.9 Cluster evaluation 

The solution cluster ranking is created. The rating of 

a cluster is the sum of the ratings of all solutions 

within the cluster. 

3.2.2 Resource selection 

The input data for resource selection are the task graph, the 

library of available resources and the optimization criteria, 

and its goal is to partition tasks into the software and the 

hardware part and to select resources for the realization of all 

tasks consistent with the established optimization criteria. 

The diagram of the algorithm of resource selection is showed 

on Fig. 3.7. 

5 

C 

 

B 

 

 

G 

 

 

0 

6 
3 

4 

2 

1 

A 

 

 

E 

 

 

F 

 

 

D 

 

 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)               72 
Volume 1, Issue 3, October 2010  

 

3.2.2.1 Cluster reproduction 

Clusters are reproduced with the use of genetic 

operators: crossing and mutation. At the reproduction 

stage, the cluster population is doubled and its initial 

size is restored at the elimination stage. This method 

was introduced arbitrarily and ensures that within a 

population some new individuals appear and fight for 

survival with their parents. The mutation operator 

creates one and the crossing operator two new 

clusters. The likelihood of using either of the genetic 

operators is defined by the algorithm parameters. 

3.2.2.2  Genetic operators 

The cluster mutation operator consists in mutating 

allocation vectors in the following way: a cluster with 

identical likelihood is picked at random and copied. 

The number of the resource which will be mutated in 

a new cluster is picked randomly Then, a number in 

the 0-1 range is picked - if the number is smaller than 

the global temperature, the resource is added, 

otherwise it is subtracted. Adding resources is limited 

by the maximum resource number parameter. At the 

beginning of the algorithm operation, resources will 

be added to the structure. As the algorithm 

approaches the end of the run defined by the cooling 

process, resources will be subtracted. This is aimed at 

creating a cost-effective structure. The cluster 

crossing operator consists in randomly picking two 

clusters and copying them. Crossing is achieved 

through cutting the resource hyper sphere with a 

hyper plane. The information contained on "one side" 

of the hyper plane is exchanged between clusters – 

Fig. 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7.  Algorithm of resource selection 

 

3.2.2.3 The algorithm for cutting the hyper sphere 

with a hyper plane 

 Determining the cutting hyper plane by picking n points 

inside an n-dimensional hyper sphere. 

 Creating a random permutation, e.g. for n = 3, the 

permutation can be (2, 1, 3). 

 Constructing the point displacement vector in respect to 

the hyper sphere center; square coordinates are picked 

consistent with dimension permutations, e.g. for three 

dimensions with the permutation (2, 1, 3): y2 = rand() % 

r2, x2 = rand() % (r2 – y2), z2  =  rand() % (r2 – (y2 + 

x2)), where: r – hyper sphere radius, and (x, y, z) are the 

coordinates of the constructed point in a three-dimensional 

space. 

 The roots of square coordinates are calculated. 

 A coordinate radical sign is picked. 

 The hyper sphere center coordinates are added to the new 

point resulting in obtaining a new point inside the n-

dimensional hyper sphere. 

 The equation of the hyper plane cutting the hyper sphere is 

calculated and the obtained system of equations is solved.  

3.2.2.4 Saving the best solutions 

After solution reproduction, a new procedure is called to save 

the globally non-dominated solutions generated during 

evolution.  This procedure executes: 

 Searches for non-dominated solutions in the present 

generation. 

 Creates the ranking of the best solutions saved so far and 

in the present generation. 

 Saves the non-dominated solutions from both the "old" 

and the "new" solutions. 

 Deletes the solutions saved in the past if they were 

dominated by new solutions; if there are more than one 

solution whose all optimized criteria values are identical, 

only one of those solutions is saved (the "newest" one). 

 If the new solutions dominated none of the ones saved in 

the past, the population was not improved. 

 The number of non-dominated solutions that the algorithm 

can save is defined by an algorithm parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 3.8. The crossing operator with the hyper plane 

 

3.2.2.5  Cluster evaluation 

At this stage of the algorithm, half the individuals are 

removed from the population. The initial number of 

individuals is restored. The elimination of individuals is 

carried out using Boltzmann tournament selection strategy. 
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3.2.2.6 Boltzman tournament  

The calculations of following equation the winner of 

tournament be appeared on basis of result: 

 

1 e

r1 r2( )

T








   (3) 

 

where: 

 r1 - ranking of first solution  

 r2 - ranking of second solution  

 T - global temperature  

They are values of this function the number from 

compartment from < 0,1 >. We draw in aim delimitations the 

winner of tournament number from compartment (0,1). If she 

is larger from enumerated number with example then 

individual about ranking is winner r1. Second individual in 

opposite incident winner is (about ranking r2) [1]. 

It the analysis of results of tournament was it been possible 

was to conduct on basis of graph of function (Fig. 3.9.): 

 

1 e
x

  1

        (4) 

where: 

x = 
r1 r2( )

T   (5) 

 
Fig. 3.9. The chart of probability of victory Boltzman  

tournament  in dependence from global temperatur 

 

If r1 < r2 this x is negative and for high temperature larger 

probability exists ,that individual about rank r1 will win 

tournament than for lower temperatures. For low 

temperatures winner the most often will be individual about 

rank r2. 

If r1 > r2 this x is positive and for high temperature larger 

probability exists ,that individual r2 will win tournament than 

for lower temperatures. For low temperatures winner the 

most often will be individual about rank r1. 

3.2.2.7 Report of algorithm  

If the quantity of generations individuals' improvement 

during which did not happen, crosses the broadcast in 

criterion of alloy quantity, algorithm finishes his working. 

The dominated osobniki in scale of whole evolution become 

considered in report. 

3.3  Scheduling of tasks 

Task scheduling is aimed at minimizing the schedule length 

(the total tasks completion time). 

3.3.1 Algorithm initialization 

The scheduling algorithm initialization resembles the 

initialization of resource selection algorithm. The difference 

is that there is solely one cluster in which solutions evolve. 

The cluster allocation remains unchanged during the 

algorithm's run because all the resources are known for the 

task scheduling algorithm. 

3.3.2 Algorithm of task scheduling 

The diagram of the algorithm of task scheduling is showed on 

Fig. 3.10. 

3.3.3  Solution reproduction 

Solutions are reproduced using the genetic operators: 

crossing and mutation. Solutions are reproduced until their 

number doubles (the number of new solutions has been 

chosen arbitrarily).  

The mutation operator produces one and the crossing 

operator two new solutions. The likelihood of using either of 

the genetic operators is defined by the algorithm parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.10.  Algorithm of task scheduling 

 

3.3.4 Genetic operators 

 The mutation operator of task allocation to resources 

acts in the following manner: a solution is randomly 

selected and copied. Then, the number of tasks in the 

system is multiplied by the global temperature. When the 

global temperature is high, the number of tasks changed in 

the allocation to resources will be greater than that in later 

stages of the evolution. Tasks are picked at random and 

allocated to resources.  

 The schedule mutation operator acts in the following 

manner: if due to the mutation operation of task allocation 

to resources, the resource the task had been running on 

was changed, then the task is removed from the schedule 

for the "old" resource and boundaries are set on the new 

resource schedule between which the task may be 
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allocated. A location within the boundaries is picked and 

the task is allocated.  

 The crossing operator of task allocation to resources 

resembles cluster crossing, however, the task graph hyper 

sphere is used for that purpose. 

 Schedule crossing operator acts in the following way – 

after the allocations have been crossed, a map is created 

defining which parent a given feature of an offspring 

comes from. The offspring stores the allocation vector 

(obtained after crossing task allocations to resources) and 

the empty vector of lists with schedules of tasks on 

available resources. The algorithm analyzes the tasks by 

checking their position on the graph. For all tasks in one 

position, the resources on which the tasks will be 

performed (defined by the vector of allocation to 

resources) are put on the list. If in a position there is only 

one task ran on a given resource, the task is entered into 

the resource schedule, otherwise the tasks are sorted 

according to the starting time they had in the parent and 

are placed in the schedule in ascending order. 

3.3.5 Solution evaluation, saving the best solutions 

and solution elimination 

They are the same algorithms which were employed in the 

resource distribution algorithm. Analogical solutions are 

eliminated using Boltzmann tournament selection strategy 

[1]. 

3.3.6 Algorithm report 

If within the number of generations determined by the 

annealing criterion a better individual did not appear, the 

evolution is stopped and the evolution report is created. The 

result of the algorithm operation is a set of non-dominated 

individuals (in the scale of the whole calculation process). 

3.4  Coherent resource partition and task scheduling 

The diagram of the algorithm of the coherent resources 

selection and tasks scheduling according to genetic approach, 

is showed on Fig. 3.11. The initialization of the coherent 

synthesis algorithm resembles the initialization of resource 

selection algorithm. The input parameters are the number of 

clusters in the population and the number of solutions in 

clusters. Solution clusters represent the structures sharing the 

same resource allocation, but with different task allocation to 

resources and different schedules.  

The outer loop of the algorithm (realizes resource selection) 

is ran until the number of generations without population 

improvement is exceeded. This value is defined by the 

annealing criterion parameter. There are few outer loops at 

the beginning of the algorithm operation. 

The number of iteration of internal loop algorithm be definite 

(Fig. 3.12.): 

 

f x( ) k e
a x 3 k

  (6) 

 

where the k - the parameter of algorithm,  

a - the annealing parameter. 

Argument x with < 0, n >,  he in every generation be enlarged 

about step of temperature. 

N - value near which temperature is levels 0.00001. 

Their number grows until it reaches the value of k with the 

falling of the temperature. Fewer task allocations and 

scheduling processes are performed at the beginning. When 

the temperature falls sufficiently low, each inner loop has k 

iterations. The number of iterations may be regulated with 

the temperature step parameter. The greater the step, the 

faster the number of inner iterations reaches the k value. 

3.5  Computational experiments 

3.5.1 The comparison coherent and non coherent 

synthesis with genetic algorithm. The results for 

tasks of dependent and nonpreemptive without 

cost of operating memory.  

We present the analytical results obtained by testing the 

presented algorithms. In the tests represented by the tables 

and flowcharts below, we compared the results from the 

incoherent and coherent synthesis. 

3.5.1.1 Minimize of cost 
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Fig. 3.11.  The coherent synthesis of computer 

system – genetic approach 

 

 

 
Fig. 3.12. Graph f(x) for k = 100 

 

Table 3.1.  

Tasks dependent. Minimum of cost. 
Number  
of task 

Non-coherent Coherent 

Cost Time Cost Tim
e 

Power consumption 

5 1.0 5.67 1.0 5.67 11.68 

10 1,25 7.75 1.25 7.75 28.94 

15 1.5 8.4 1.5 8.3 54.42 

20 1.5 11.4 1.5 8.4 42.64 

25 1.5 14.2 1.5 14 80.18 

30 1.5 17.6 1.5 17.5 103.12 

35 2.5 15.75 2.5 12.5 101.04 

40 2.5 18.25 2.5 12.1 129.17 

45 2.5 19,5 2.5 19.4 126.95 

50 2.75 19.4 2.75 15.9 124.67 

55 2.75 18 2.75 14.7 147.32 

 

3.5.1.2 Minimize of time 

 
Table 3.2.  

Tasks dependent. Minimum of processing time. 
Number  
of task 

Non-
coherent 

Coherent 

 Cost Time Cost Time Power 
consumption 

5 1.00 5.57 1.8 5 26,57 

10 1.80 7.40 1.8 7.45 31,98 

15 3.5 7.70 3.1 6,9 73,59 

20 3.6 8.65 3.7 7.1 97,63 

25 4.2 7.95 3.9 7,7 105,13 

30 4.1 9.20 2.9 7.8 121,14 

35 5.6 8.45 5.5 7.77 158,2 

40 7.1 8.65 6.35 7.7 168,82 

45 8.6 8.6 5.1 5.5 230.11 

50 8.4 8.65 7.3 7.45 190.64 

55 9.51 9.53 7.7 7.95 222.78 

 

3.5.1.3. Charts 

Chart 3.1. 
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During cost optimization, both algorithms yielded similar 

cost values for all tested task sets. However, the coherent 

algorithm improved time optimization for graphs exceeding 

30 tasks. For 50 tasks it achieved a 15% improvement of the 

task completion time Chart 3.1. 

Chart 3.2. 
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Chart 3.3. 
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When the flowchart reflecting the dependence of time from 

the number of system tasks is considered (Chart 3.2), time 
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minimization is comparable for both algorithms. 

Nevertheless, once the chart showing the interdependence of 

cost and the number of tasks is analyzed (Charts 3.3), it is 

clear that the solutions yielded by the coherent algorithm are 

far less expensive than those from the incoherent algorithm. 

The coherent algorithm achieves similar task completion 

times in solutions much cheaper from those found by the 

incoherent algorithm. 

 

3.5.2. The comparison coherent and non coherent 

synthesis with genetic algorithm. The results for 

tasks of dependent and nonpreemptive with cost 

of operating memory. 

3.5.2.1 Minimize of cost 

 

Table 3.3. 

Tasks dependent. Minimum of cost. 
Number 
 of task 

Non-
coherent 

Coherent 

Cost Time Cost Time Power 
consumption 

10 1.9 7.27 1.5 7.6 35.47 

20 2.25 11.99 2 12.25 40.17 

30 2.25 15.33 2.25 15.4 86.39 

40 2.5 18.67 2,5 18.66 111.1 

50 2.75 20.6 2.73 20.25 166.87 

60 3,25 29.25 2.7 17.8 242.29 

70 2.5 32 2.5 32 201.29 

80 2.75 28.8 2.39 28.8 380.28 

90 2.25 48.25 2.25 42.1 247.93 

100 2.6 45.6 2.2 45.6 311.85 

110 2.6 56.2
5 

2.2 50.4 320.98 

  

 

3.5.2.2 Minimize of time 

 
Table 3.4.  

Tasks dependent. Minimum of time. 
Number 
 of task 

Non-coherent Coherent 

Cost Time Cost Time Power 
consumption 

10 1.2 13.95 1.5 9.8 30.77 

20 2.5 19.29 2.2 15.,9
5 

59.64 

30 3.67 15.45 3.3 12.25 107.22 

40 4.4 15.85 4.4 13.45 159.94 

50 5.5 15.8 5.1 15.05 197.36 

60 5.6 21.45 5.7 13.45 252.37 

70 7.3 20.15 7.7 16.40 340.48 

80 7.6 17.45 7.2 16.3 242.51 

90 8.5 24.45 7.7 20.15 302.94 

100 10 19.75 7.9 18.85 358.76 

110 10.3
3 

24.8 9.1 20.8 421.98 

 

 

3.5.2.3 Charts 

 

Chart 3.4. 
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Chart 3.5. 
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Chart 3.6. 
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Chart 3.7. 
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The coherent algorithm improved time optimization. The 

solutions yielded by the coherent algorithm are far less 

expensive, as well. During minimization of time the got 

architectures are complex and then the scheduling algorithm 

has the larger possibilities for optimization. This is 

consequence of this that coherent algorithm gets better results 

than non-coherent algorithm. 

3.5.3. Mult-icriterions optimization. The optimization of 

time of executing, power consumption and cost. 

Results for dependent tasks. 

Tests were conducted for nonpreemptive and dependent 

tasks. Parameters of constraints: the maximum number of 

processors - 5, maximum cost - 3, maximum time 25. 

Optymalizowane simultaneously. It the area of optimum 

solutions in result was received was in sense Pareto [166]. 

The following tables presented solutions (in Pareto area) for 

the cost, time and power consumption and solution 

"compromissing". Searching space of solutions be led to time 

when global temperature reached value 0.01. 

3.5.3.1 Minimize of cost 

Tab. 3.5. 

Multi-criterions optimization. Minimum of cost.  
Number  
of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

5 0.5 17 6.47 

10 0.75 15.5 15.6 

15 1.5 8.4 54.42 

20 1 19 42.64 

25 2 15.75 48.51 

30 2.25 18.4 70.51 

35 1.5 20.8 114.05 

40 2.75 17.75 104.68 

45 2.25 24.67 102.02 

50 2.25 24.25 108.48 

55 2.5 25 164.58 

 

3.5.3.2 Minimize of time 

Tab. 3.6. 

Multi-criterions optimization. Minimum of time.  
Number 
 of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

5 1.75 4.25 9.56 

10 3 3.6 35.47 

15 2.75 4.2 77.69 

20 1.75 12.33 37.21 

25 2 12.25 52.24 

30 2.25 14.9 92.18 

35 2.75 10.4 173.83 

40 2.75 12.6 203.57 

45 2.75 14.8 230.11 

50 2.75 16.3 242.29 

55 2.7
5 

18 268.59 

 

3.5.3.3 Minimize of power consumption 

Tab. 3.7. 

 Multi-criterions optimization. Minimum of  power 

consumption.  
Number  
of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

5 1.75 14.75 6.28 

10 2.5 23 12.57 

15 2.95 18.5 20.9 

20 1.75 21 28.78 

25 2.5 23 40.46 

30 2.75 24.6 54.73 

35 3 13.33 78.3 

40 2.75 15.85 112.03 

45 2.25 24.67 95.44 

50 2.25 24.5 105.99 

55 2.5 25 164.58 

 

3.5.3.4 Compromissing solution 

 

 

Tab. 3.8. 

Multi-criterions optimization. Compromissing solution. 
Number  
of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

5 1.75 6.75 9.26 

10 1,5 6.2 35.47 

15 2.95 15.5 24.01 

20 1.75 12.83 35.45 
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25 2 14.5 51.25 

30 2.75 16.9 63.58 

35 2 18 78.3 

40 2.75 17.75 104.68 

45 2.25 21.75 99.5 

50 2.25 23.88 113.26 

55 2.5 25 164.58 

 

3.5.3.5 Charts 

Chart. 3.8. 
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Chart. 3.9. 
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Chart. 3.10. 
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3.5.4. Multi-criterions optimization. The optimization of 

time of executing, power consumption and cost. 

Results for dependent tasks with cost of operating 

memory. 

Tests were conducted for nonpreemptive and dependent 

tasks. Parameters of constraints: the maximum number of 

processors - 5, maximum cost - 3, maximum time 25, 

optimized simultaneously. It the area of optimum solutions in 

result was received was in sense Pareto. The following tables 

presented solutions (in Pareto area) for the cost, time and 

power consumption and solution "compromissing". 

Searching space of solutions be led to time when global 

temperature reached value 0.01. 
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3.5.4.1 Minimize of cost 

Tab. 3.9. 

Multi-criterions optimization. Minimum of cost. 
Numbe

r  
of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

10 5.5 1.9 56.07 

20 1.5 18,5 33.15 

30 5.9 23 82.41 

40 1.5 50 81.73 

50 1.25 45.5 137.2 

60 2.75 22 299.61 

70 2.5 44.67 158.2 

80 2.25 47 179.99 

90 4.25 33.8 311.6 

100 5.25 46 291.7 

110 4.2
5 

47 431.76 

 

 

3.5.4.2 Minimize of time 

 

Tab. 3.10. 

Multi-criterions optimization. Minimum of time. 
Number 
 of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

10 6.5 1.9 43.61 

20 2.75 7.3 105.25 

30 5.9 23 82.41 

40 7 20.67 111.88 

50 4.25 13.4 205.63 

60 4.25 16.2 257.48 

70 2.5 32 175.24 

80 3.25 31 189.78 

90 4.25 22.2 393.7 

100 5.75 20.06 390.77 

110 5.5 20.1 558.53 

 

3.5.4.3  Minimize of power  consumption 

Tab. 3.11. 

Multi-criterions optimization. Minimum of power 

consumption.  
Number  
of tasks 

Coherent synthesis 

Cost Time Power 
consumption 

10 6.5 6.67 23.93 

20 1.5 18,5 33.15 

30 7.7 45 54.44 

40 1.5 50 81.73 

50 1.25 45.5 137.2 

60 4.25 21.8 225.56 

70 2.5 32 175.24 

80 2.25 47 179.99 

90 4.25 33.8 311.6 

100 5.25 46 291.7 

110 4.3 49 429.31 

 

3.5.4.4 Compromissing solution 

Tab. 3.12. 

Multicriterions optimization. Compromisssing solution. 
Number of 

tasks 
Coherent synthesis 

Cost Time Power 
consumption 

10 6.5 2 37.99 

20 1.5 18,5 33.15 

30 5.9 23 82.41 

40 7 23 121.56 

50 4.25 16.2 186.05 

60 2.5 32 175.24 

70 2.5 38 167.59 

80 3.25 37 183.67 

90 4.25 28.6 328.73 

100 6.75 30.33 336.36 

110 4.25 41.8 435.77 

 

 

3.5.4.5 Charts 

Chart 3.11. 
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3.6 Conclusions  

This graphs presented of multicriterions optimizationform 

coherent synthesis of computer system. The designer in result 

of working of algorithm receives in sense the gathering of 

optimum solutions Pareto. It stays with the designer's task the 

selection the most answering his requirements of solution. In 

dependence from this what are for system requirements it was 

it been possible to lean on one of got results. To to get to 

know for given authority of problem the specific of space of 

solutions well, important the use is long the list of 

remembering the best solutions (in tests the parameter of 

algorithm "it quantity the best” it was established was value 

50). Important the settlement of slow refreshing the algorithm 

is equally (the parameters "the step of temperature” 0.1 and 

"the coefficient of cooling” - in dependent on from quantity 

of tasks in system; generally smaller than 0,05). We prevent 

thanks this sale large convergence in population [79], [98]. 

The algorithm searches near smaller temperature, the larger 

area in space of solutions. It it was noticed was also that the 

larger probability of mutation helps the finding the better 

architecture of system, and the larger probability of crossing 

improves the optimization of temporary criterion. 

 

Chart. 3.12. 
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Chart 3.13. 
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3.7 Example coherent synthesis’s applied 

3.7.1 Specification of system 

We assume, that algorithm of coherent synthesis has to 

design computer system described on this graph of tasks –

Fig. 3.13. We have pools of available resources: 

 

Tab. 3.13. 

Available resources 
ID Type Cost Cost of 

memory 
Power 

consumption 

P1 universal 1 0.15 0.001 

P2 universal 1.5 0.2 0.002 

A1 dedicate
d 

0.7 0 0.001 

A2 dedicate
d 

0.9 0 0.002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13. Graph of tasks 

 

In other requirements and constraints of system are 

following: 
Tab. 3.14. 

Times of tasks’s processing.  

If  0 - processor does not be adapted to realization of this 

task. 
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Tasks Processors 

 P1 P2 A1 A2 

Z0 2 1 3 2,5 

Z1 4 2 1,5 0 

Z2 2 1 3.5 3 

Z3 4 2 0  0 

Z4 5 2,5 0 0 

Z5 6 3 2 1 

Z6 3 1,5 0 0 

Z7 2 1 0 0 

Z8 1 0,5 0 0 

Z9 4 2 0 1 

Z10 2 1 0,5 0,4 

Z11 2 1 0,5 0,4 

 

Tab. 3.15. 

Power consumption of tasks’s processing. 

If  0 - processor does not be adapted to realization of this 

task. 
Tasks Processors 

P1 P2 A1 A2 

Z0 1 1,5 1,5 1,5 

Z1 2 3 1 0 

Z2 1 1,5 2 2 

Z3 2 3 0 0 

Z4 2,5 3,5 0 0 

Z5 3 4,5 2 1,5 

Z6 1,5 3 0 0 

Z7 1 2 0 0 

Z8 0,5 1 0 0 

Z9 2 3 0 1,5 

Z10 1 2 0,7 0,6 

Z11 1 2 0,7 0,6 

 

Processor P2 is quicker from processor P1 but processor P2 

takes more power and is dearer than P1. Dedicated processor 

A1 can realize tasks Z0, Z1, Z2, Z5, Z10 and Z11 and he is 

adequate for tasks: Z5, Z10 and Z11. Task Z0 and Z2 can be 

executed on this processor but time of their realization is 

longer than on universal processors. This processor is 

cheaper from dedicated processor A2, but the power 

consumption has greater. Dedicated processor A2 is adequate 

for execution of tasks Z5, Z9, Z10 and Z11. This processor is 

insufficient for tasks Z0 and Z1 than universal processors, 

but more suitable than processor specialized A1. The cost of 

processor A2 is greater than processor A1. 

3.7.2 Results of optimization  

Simplifying of analysis we assume that four is the maximum 

number of processors. 

 

3.7.2.1 Minimize of cost (without of cost of memory) 

 
Fig. 3.14. Minimize of cost without of cost of memory 

 

Tab. 3.16. 

Minimize of cost without of cost of operating memory 
Cost Time Power 

consumption 

1 37 18,5 

We for obvious reasons in this example have consisting 

system from one and the cheapest universal processor. 

Dedicated processors, which are cheaper possibilities of 

realization of all tasks have not in this system. 

3.7.2.2 Minimize of cost (with of cost of memory) 

 

 
Fig. 3.15. Minimize of cost (with of cost of  memory)  

 

Tab. 3.17. 

Minimize of cost (with of cost of operating memory) 
Cost Time Power 

consumption 

2,6 23,5 17,4 

 

We for this example will receive system folded from one 

universal processor (cheaper) as well as one dedicated 

processor (cheaper). Here two processors more suitable is 

apply. Cost of realization of  all tasks on the cheapest 

universal processor is equal 2,8 (the cost of processor and 12 

the tasks the by 0,15 cost of unit of memory).  

3.7.2.3 Minimize of processing time 

 

 
Fig. 3.16. Minimize of processing time  

 

Tab. 3.18. 

Minimize of processing time 
Cost Time Power 

consumption 

6 6,3 21,2 

 

For example in which in have the minimization of time is 

generated system, which are two quicker universal processors 

and two dedicated processors A1 and A2. Algorithm counted 

schedule in which processors A1 and A2 executed tasks for 

which they are dedicated. 

3.7.2.4 Minimize of power consumption  
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Fig. 3.17. Minimize of power consumption  

Tab. 3.19. 

Minimize of power consumption 
Cost Time Power 

consumption 

4,65 14,8 14,7 

 

For this example algorithm generated system folded from two 

cheaper dedicated processors for which the power 

consumption is the lowest for almost all tasks. Task Z1 was 

executed on processor A1 because executing this task 

processor A1 is dedicated. Task Z10, Z5, Z9 and Z11 are 

executed on dedicated processor A2  on which is smallest the 

power consumption. 

3.7.2.5 Minimize of time and cost (for given maximum 

of cost)  

 Maximum cost was given on value 4.  

 

 
 

Fig. 3.18.  Minimize of time and cost. Cheaper system. 

Tab. 3.20. 

Minimize of  time and cost. Cheaper system. 
Cost Time Power 

consumption 

3,4 13,5 23.4 

 

 

 
 

3.19. Minimize of time and cost. Quicker system.  

Tab. 3.21. 

 

Minimize of time and cost. Quicker system. 
Cost Time Power 

consumption 

3,8 10,8 23,2 

 

 
 

Fig. 3.20. Minimize of cost and time. The cheapest system. 

Improvement of time. 

 

Tab. 3.22. 

 

Minimize of cost and time. The cheapest system. 

Improvement of time. 
Cost Time Power 

consumption 

2,6 22,5 17,4 

 

Algorithms for multicriterions optimization receive the area 

of optimum solutions in sense Pareto. First and second 

solution have the costs greater than settled the maximum as 

well as have larger time from minimum time of system. 

However they find among these conflicting requirements 

compromise. First of solutions is cheaper since second about 

0,4. The time of realization of tasks is longer about 2,7. The 

power consumption is lower for dearer system. The solution 

for last case is about the smallest of cost and other criterions 

are simultaneously estimated. Solution this has the same cost 

how the cheapest system (solution for minimize of cost) and 

schedule length about 1 reduces simultaneously. 

3.7.2.6 Minimize of cost and power consumption (for 

given maximum of time) 

The maximum of time was given on value 20.  

 

 
 

Fig.  3.21.  Minimize of cost and power consumption. 

Maximum time equal 20. Cheaper system. 

 

Tab. 3.23. 

Minimize of cost and power consumption. Maximum time 

equal 20.  

Cheaper system. 
Cost Time Power 

consumption 

3,5 19,8 15,2 
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Fig. 3.22.  Minimize of cost and power consumption. 

Maximum time equal 20. Dearer system. 

 

Tab. 3.24. 

 

Minimize of cost and power consumption. Maximum time 

equal 20.  

Dearer system. 
Cost Time Power 

consumption 

3.65 19.3 14.7 

 

Criterion of time was the requirement for resultant of system: 

he had to finish the executing the tasks before 20 units of 

time.  Other criterions have be optimized: i.e. time and cost. 

Algorithm generated two optimum solutions in sense Pareto. 

System for first solution executed tasks to 19,8 units of time, 

has the larger power consumption and his cost is smaller. 

Systems these differ of the execution of task Z0, only. In first 

system this task is executed through dedicated processor, 

which has larger power consumption and he need not 

additional operating memory.  Execution of this task through 

universal processor P1 has smaller of the power consumption 

and he need to execution of task the additional memory. The 

second solution generated system for which time executing 

all tasks is shorter. 

 

3.7.2.7 Multicriterions optimalization. Coherent 

minimize of cost, time and power consumption 

(for given maximum of time). 

Maximum of time was given on value 15. 

 

 
 

Fig. 3.23.  Minimize of cost, time and power consumption. 

Cheaper system. 

 

 

Tab. 3.25. 

Minimize of cost, time and power consumption. Cheaper 

system. 

Cost Time Power 
consumption 

3,4 14,5 23,4 

 

 

 

 

Fig. 3.24.  Minimize of cost, time and power consumption. 

Cheaper system. System with optimized power consumption. 

 

Tab. 3.25 

Minimize of cost, time and power consumption. Cheaper 

system. 

System with optimized power consumption. 
Cost Time Power 

consumption 

4,9 14,5 17,9 

 

The algorithm generated area of optimum solutions in sense 

Pareto for three criterions. Generated solutions get the 

different compromise among conflicting criterions. Two 

systems to analysis were chosen. Finish execution time for all 

of tasks is 14,5 unit. First system consists with 2 processors 

and his cost is small. However executing of tasks on 

processor P2 causes the power consumption considerable 

[73]. The dedicated processor executes the tasks with smaller 

power consumption than processor A2. Task Z2 is except. 

Realization of this task on processor P2 would cause the 

crossing the limit of time. Second system consists with 4 

processors. This system is dearer (150%) however the power 

consumption reduces significantly and the limit of time of 

realization tasks fulfils simultaneously. 

 

4. Résumé  

The paper describes genetic algorithms and their 

implementation flowcharts. Moreover, it presents selected 

results of analytical experiments for resource selection and 

task scheduling. The paper explores the coherent synthesis 

algorithm of computer systems, in which resource selection 

and task scheduling optimization processes are realized 

concurrently and coherently. The coherent approach in the 

synthesis generates common and interdependent solutions 

regarding the system structure (type and configuration of the 

selected resources), as well as the scheduling of tasks ran on 

those resources. In the presented approach, the cost of 

resources (system cost), the time of completing all tasks 

(system speed) and the power consumption of the system are 

optimized. The coherent algorithm yields much (up to 40%) 

better solutions, which is proved by analytical experiments. 
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