
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 66
Volume 1, Issue 3, October 2010

Genetic Algorithm of Resource Partition and Task

Scheduling

Mieczyslaw Drabowski

Cracow University of Technology

Warszawska 24 Krakow 31-155 Poland

drabowski@pk.edu.pl

Abstract: The paper presents an innovative approach to solving the

problems of computer system synthesis based on genetic methods

assisted with simulated annealing strategy. We describe algorithm

realizations aimed to optimize resource partition and task

scheduling, as well as the adaptation of those algorithms for

coherent synthesis realization. We then present selected analytical

experiments proving the correctness of the coherent synthesis

concept and indicate its practical motivations.

Keywords: task, resource, allocation, genetic, coherent,

synthesis.

1. Introduction

The goal of high-level synthesis of computer systems (i.e.

systems of type the complex of resources and operations) is

to find an optimum solution satisfying the requirements and

constraints enforced by the given specification of the system.

The following criteria of optimality are usually considered:

costs of system implementation, its operating speed, power

consumption and dependability. A specification describing a

computer system may be provided as a set of interactive tasks

(processes, functions).

The partition of the functions between hardware and software

is the basic problem of synthesis. Such partition is

significant, because every computer system must be realized

as result of hardware implementation for its certain tasks.

In the synthesis methods so far, the software and hardware

parts were developed separately and then connected in

process the co-called co-synthesis, which increased the costs

and decreased the quality and reliability of the final product.

The resources distribution is to specify, what hardware and

software are in system and to allocate theirs to specific tasks,

before designing execution details.

The problems of tasks scheduling are one of the most

significant issues occurring at the procedure synthesis of

operating systems responsible for controlling the distribution

of tasks and resources in computer systems.

The objective of this research is to present the concept of

coherent approach to the problem of system synthesis, i.e. a

combined solution to task scheduling and resource partition

problems. The model and approach are new and original

proposals allowing synergic design of hardware and software

for performing operations of the computer system. This is

approach, which we called a par-synthesis (coherent co-

synthesis).

This research shows the results selected of computational

experiments for different instances of system par-synthesis

problems proving the correctness of the coherent synthesis

concept and shows the methods solving this problems.

Due to the fact that synthesis problems and their

optimizations are NP-complete we suggest meta-heuristic

approach, i.e. genetic with simulated annealing.

Coherent co-synthesis of computer systems, as well as

synergic design methodology their structures and scheduling

procedures may have practical application in developing the

tools for automatic aided for rapid prototyping of such

systems.

2. Coherent synthesis of computer system

2.1 The classical process of computer system synthesis

The classical process co-synthesis [2], [14], [22] – hardware

and software – for computer system consists of the following

stages (Fig. 1.1):

System specification

Resource partition Task scheduling

Allocation of task and resource

Resulting system

 Fig. 1.1. The process co-synthesis

1. Specification of the designed system in terms functional

and behavioural – requirements and constraints analysis. The

system description in an high-level language, abstracting

from the physical implementation.

2. Resource partition – architecture development.

3. Task scheduling – system control development.

4. Allocation the system functions to the architecture

elements – generating the system modular architecture,

control adaptation and the whole system integration.

The system being constructed consists of hardware elements

and software components performed by selected hardware

modules. The system is specified by a set of requirements to

be met. In general, each requirement may be satisfied by

hardware elements or software components executed by

universal processors and memories. Obviously, at this stage

of design, one must take into account appropriate system

constraints and criteria of optimal system operation.

Accordingly, the key issue in the synthesis is efficient

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 67
Volume 1, Issue 3, October 2010

partitioning of system resources due to their hardware and

software implementation, providing fulfilment of all

requirements and the minimum implementation cost.

Such partitioning methodology [17] may accept, as a starting

point, assignment of the hardware implementation to all

system functions and further optimization of project costs,

search for possibilities of replacing certain tasks realized by

hardware with their software equivalents. Other methods [20]

of the resources partitioning start with an exclusive software

implementation and further search for implementation of

certain tasks by hardware. In both approaches the objective is

optimization of the implementation cost of the same tasks,

i.e. in particular minimization of the execution time by

specialized hardware [3]. Obviously the requirements and

constraints, especially those regarding time and power

consumption, have decisive influence upon selection of

necessary hardware components.

The measure for an efficient implementation of a computer

system is the degree of its modules utilization, minimized

idle-time of its elements and maximized parallel operation of

its elements [21].

A non-optimum system contains redundant modules or

modules that are excessively efficient in comparison to the

needs defined by the tasks what, consequently, increases the

system cost. In high-level synthesis, the optimization of the

designed system costs, speed and power consumption is

usually an iterative process, requiring both changes in the

architecture and task scheduling [23]. That is, why an

optimum system may be created as a compromise between

the system control algorithm and its hardware organization.

2.2 The general model for the problem of system

synthesis

System synthesis is a multi-criteria optimization problem.

The starting point for constructing our approach to the issues

of hardware and software synthesis is the deterministic theory

of task scheduling [4], [7], [25]. The theory may serve as a

methodological basis for multiprocessor systems synthesis.

Accordingly, decomposition of the general task scheduling

model is suggested, adequate to the problems of computer

system synthesis. From the control point of view such a

model should take into account the tasks, which may be

either preemptable or nonpreemptable. These characteristics

are defined according to the scheduling theory. Tasks are

preemptable when each task can be interrupted and restarted

later without incurring additional costs. In such a case the

schedules are called to be preemptive. Otherwise, tasks are

nonpreemptable and schedules nonpreemptive.

Preemptability of tasks in our approach cannot be a feature of

the searched schedule – as in the task scheduling model so

far. The schedule contains all assigned tasks with individual

attributes: preemptive, nonpreemptive. From the point of

view of the system synthesis, the implementation of certain

tasks from the given set must be nonpreemptible, for the

other may be preemptible (what, in turn, influences

significantly selection of an appropriate scheduling

algorithm) [5]. Moreover, we wish to specify the model of

task scheduling in a way suitable for finding optimum control

methods (in terms of certain criteria) as well as optimum

assignment of tasks to universal and specialised hardware

components. Accordingly, we shall discuss the system of type

the complex of resources and operations:

∑ = { R, T, C } (1)

where:

R – is the set of resources (hardware and software),

T – is the set of the system’s tasks (operations),

C – is the set of optimization criteria for the system’s

behaviour and structure.

Resources. We assume that processor set P = {P1, P2,…, Pm}

consists of m elements and additional resources A = { A1,

A2,…, Ap} consist of p elements.

Tasks. We consider a set of n tasks to be processed with a set

of resources. The set of tasks consists of n elements T = {T1,

T2,…, Tn}. A feasible schedule is optimal, if its length is

minimum and it is implemented using minimum resource

cost.

Each task is defined by a set of parameters: resource

requirements, execution time, ready time and deadline,

attribute - preemptable or nonpreemptable. The tasks set may

contain defined precedence constraints represented by a

digraph with nodes representing tasks, and directed edges

representing precedence constraints. If there is at least one

precedence constraint in a task set, we shall refer it to as a set

of dependent tasks, otherwise they are a set of independent

tasks.

Optimality criteria. As for the optimality criteria for the

system being designed, we shall assume its minimum cost,

maximum operating speed and minimum power

consumption.

The proposed model may be used for defining various

synthesis problems for optimum computer systems.

The model of a system in our approach, [9], [11] typical for

the theory of task scheduling, consists of a set of

requirements (operations, tasks) and existing relationships

between them (related to their order, required resources,

time, readiness and completion deadlines,

preemptability/nonpreemptability, priority etc.). The

synthesis procedure contains the following phases:

identification of hardware and software resources for task

implementation, defining the processing time, defining the

conflict-free task schedule and defining the level of resource

co-sharing and the degree of concurrency in task

performance.

The synthesis has to perform the task partitioning into

hardware and software resources. After performing the

partition, the system shall be implemented partially by

specialized hardware in the form of integrated circuits

(readily available on the resources pools or designed in

accordance to the suggested characteristics) [18]. Software

modules of the system are generated with the use of software

engineering tools. Appropriate processors shall be taken from

the resource pool. Synthesis of a system may also provide a

system control, create an interface and provide

synchronization and communication between the tasks

implemented by software and hardware [11].

The system synthesis, i.e. defining system functions,

identifying resources, defining control should be

implemented in synergy and be subject to multi-criteria

optimization and verification during implementation.

2.3 The coherent process of system synthesis

Modeling the joint search for the optimum task schedule and

resource partition of the designed system into hardware and

software parts is fully justified. Simultaneous consideration

of these problems may be useful in implementing optimum

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 68
Volume 1, Issue 3, October 2010

solutions, e.g. the cheapest hardware structures. Synergic

approach enables also performing of all assigned tasks with

the minimum schedule length. With such approach, the

optimum task distribution is possible on the universal and

specialized hardware and defining resources with maximum

efficiency.

We propose the following schematic diagram of a coherent

process of systems synthesis [10], (Fig. 1.2). The suggested

coherent synthesis consists of the following steps:

1. specification of requirements for the system to be

designed and its interactions with the environment,

2. specification of tasks, including evaluation of task

executive parameters using available resources (e.g.

execution times),

3. assuming the initial values of resource set and task

scheduling – initial resource set and task schedule

should be admissible, i.e. should satisfy all

requirements in a non-optimum way,

4. task scheduling and resource partitioning,

5. evaluating the operating speed and system cost,

multi-criteria optimization,

6. the evaluation should be followed by a modification

of the resource set, a new system partitioning into

hardware and software parts (step 4).

Iterative calculations are executed till satisfactory design

results are obtained – i.e. optimal (or sub-optimal) system

structure and schedule. The designed system should be fast

and cheap.

3. The genetic method for coherent synthesis of

computer system

 This chapter presents a coherent approach to solving the

problems of computer system synthesis based on genetic

method assisted with simulated annealing strategy. We

describe algorithm realizations aimed to optimize resource

partition and task scheduling, as well as the adaptation of

those algorithms for coherent co-synthesis realization. We

then present selected analytical experiments proving the

correctness of the coherent synthesis concept and indicate its

practical motivations. Due to the fact that synthesis problems

and their optimizations are NP-complete [6], [15] we suggest

meta-heuristic approach, genetic with Boltzmann tournament

selection strategy [1], [12], [24].

In order to eliminate solution convergence in genetic

algorithms, we use data structures which ensure locality

preservation of features occurring in chromosomes and

represented by a value vector. Locality is interpreted as the

inverse of the distance between vectors in an n-dimension

hypersphere. Then, crossing and mutation operators are data

exchange operations not between one-dimensional vectors

but between fragments of hyperspheres. Thanks to such an

approach, small changes in a chromosome correspond to

small changes in the solution defined by the chromosome.

The presented solution features two hyperspheres: task

hypersphere and resource hypersphere.

The solutions sharing the same allocations form the so-called

clusters. The introduction of solution clusters separates

solutions with different allocations from one another. Such

solutions evolve separately, which protects the crossing

operation from generating defective solutions. There are no

situations in which a task is being allocated to a non-

allocated resource. Solution clusters define the structures of

the system under construction (in the form of resources for

task allocation). Solutions are the mapping of tasks allocated

to resources and task scheduling. During evolution, two types

of genetic operations (crossing and mutation) take place on

two different levels (clusters and solutions).

environment

Specification

system

Resources

database

Set of tasks

(requirements and constraints)

Initial sets resources

estimation

of parameters

System operation analysis

time-optimal,

cost-optimal

Resources set

modifications

Task

scheduling

Task and resource allocation

System performance analysis

Resource

partition

Resulting system

Fig. 1.2 . The coherent process of computer system synthesis

A population is created whose parameters are: the number of

clusters, the number of solutions in the clusters, the task

graph and resource library. For the synthesis purposes, the

following criteria and values are defined: optimization

criteria and algorithm iteration annealing criterion if solution

improvement has not taken place, maximum number of

generations of evolving solutions within clusters, as well as

the limitations - number of resources, their overall cost, total

time for the realization of all tasks, power consumption of the

designed system and, optionally, the size of the list of the

best and non-dominated individuals.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 69
Volume 1, Issue 3, October 2010

3.1 Data structures

3.1.1 The structure ”Population”

This structure contains information about individuals'

population:

 The table of clusters of solutions.

 Hyperspheres the resources and graph of tasks.

 Number of generation of clusters.

 Number of generation of solutions in cluster.

 Maximum quantity of generations of evolving solutions

inside the clusters.

 Criterion of stop of evolution - the maximum quantity of

generations without improvement of solution.

 Number of generations without obtainment of

improvement of solution.



during evolution solution.

 Map of costs of optimization.

 Criterion of optimization - the maximum quantity of

processors, maximum cost, maximum time, power

maximum consumption.

 Dimension the list of the best solutions.

 Probability of crossing of individuals. The of mutation

even probability is 1 - the probability of crossing.

3.1.2 The structure ”Clusters of solutions”

The structure contains the information about cluster of

solutions possessing the same the allocation of resources:

 Area describing the allocation of resources.

 Total price of allocated processors.

 Ranking of clusters (the sum of rankings of solutions

inside the cluster).

Use of clusters of solutions about the same allocation has on

aim the separating from me the solutions about different

alokacjach. Solutions such evolve separately. In it secures

oneself then the operation of crossing before production the

defective solutions. It does not come to situation such that

task be becomes attached to supply which he does not be

allocate.

3.1.3 The structure ” Solutions in demand”

The structure contains the information about the outcome

structure and functionality of architecture of system:

 The area describing the attributing to resources the tasks.

 The table of optimized costs.

 Ranking of solution (the quantity of solutions in

population which did not dominate this solution)

3.1.4 The structure ”Allocation of resources”

The structure contains about allocated resources in frames of

cluster of solutions:

 The table of solutions about the same allocation of

supplies.

3.1.5 The structure ”Attributing to resources tasks”

The behaviour of tasks describes in system (attributing,

schedule):

 The table of list describing order in a row on individual

processors tasks. Every list responds one allocated

processor.

 The table including the times of beginning and end of

executing the tasks.

 The table the describing allotment of tasks to allocated

resource.

3.1.6 The structure ”Graph of tasks”

The structure contains the information about of graph of

tasks describing the functional requirements of system:

 Number of tasks in vice - count

 The table of sorted nods of graph.

 The area describing construction of graph (matrix of

incidences)

 The area constains sorted in order of tasks by the BFS

algorithm.

 The area of nods of graph.

Fig. 3.2. The operations of crossing on different structures of

data. Prevention of formation of defective solutions.

3.1.7 The structure ”Nod of graph of tasks”

The structre describing the nod in graph:

 Number of nod.

 Level in graph.

 Predecessors' list.

 Successors' list.

3.1.8 The structure ”Resources”

It contains information describing available resources:

 Number of processors

 Number of features describing the given processor.

 The area of structures describing the processor.

3.1.9 The structure ”Processor”

It contains information describing processor:

 Type (universal, dedicated).

 Cost of operating memory.

 Cost of processor.

 The area of times of executed through this processor the

tasks.

 The area of power average consumptions tasks.

3.1.10 The structure ”Global temperature”

It contains information describing the global temperature of

algorithm:

 Current temperature.

 Ratio of cooling.

 Step of temperature.

During working of algorithm, the temperature will diminish

with function peaceably,

 e
a x

 (2)

where a - the ratio of cooling. The workings about step the

algorithm of reducing the temperature the argument x be

reduced in time.

Solution

cluster

Crossing
of allocations

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 70
Volume 1, Issue 3, October 2010

3.1.11 The Structure ”Task scheduling”

It contains the functions for scheduling of the tasks:

 Initial scheduling, ASAP algorithm.

 Mutation of schedule.

 Crossing of schedule.

 Function for the counting schedule length.

3.1.12 Struktura ”Hiperspher the features of system”

It contains the information the relating similarities of features

of processors and tasks.

 Co-ordinates of centre hiperspher.

 Length of diameter

 Factors hiperplane cutting hiperspher.

 Distance of all vectors inside the hiperspher from centre.

The structure of system is represented by file of linear tables

of data. During it crossing it comes to exchange of data

among tables. It unfortunately, many problems were not it

been possible was to describe with the help of the one

dimension of series of data. Linear order usually forces upon

on optimized data [8], [13].

Fig. 3.3. Chart of reducing the temperature of algorithm

The evolutionary algorithm, to he could act skilfully, need in

of data representing the solution structure the behaviours of

lokalności. The exchange of data among individuals (the

crossing) she should separate the information the describing

more similar features of architecture more more seldom the

than information the describing entirely different features

[19]. Small changes in genotype should answer in solution

which genotype represents small changes.

Putting on linear order on multidimensional information,

wears out lokalność becomes. This problem the structure of

data representing hipersferę in aim of solution was applied.

The multidimensional information becomes recorded in

figure of vector. We interpret as reverse of local distance n -

dimension vectors inside n - dimension hiperspher.

Fig. 3.4. Two dimension hipersfera (circle). Resources be

described by two features here, e.g. time and cost.

The furthest distant from me vectors mark diameters and

centre hyper sphere.

Algorithm keeps two hyper sphere:

 Task hyper sphere - two the dimensional, representing task

graph structure. Each of the nods is defined by two

coordinates: an indicator obtained through topological

sorting (the tasks are “closest” if one of them is adirect

successor of the other), and an indicator calculated from

the BFS algorithm parallel tasks are equally distant from

the beginning of the graph).

 Resources hyper sphere is three-dimensiona representing

the depedencies of resource features. Each of the

resources may be defined by the following coordinates:

cost, speed and power consumption.

3.2 Partition of resources

It is the data the graph of tasks, pool of resources as well as

criterions of optimality. The algorithm of partition of

resources has determine resources, which have execute all

tasks with all criterions.

3.2.1 Initial of algorithm

The aim initial of algorithm is of the construction of

architecture of system the simplest and first. The architecture

of system must base of accessible resources and realise

required functions and set criterions. Algorithm executes

following steps:

3.2.1.1 Construction of graph of tasks

On basis of input data the structure the describing graph of

tasks is built. The graph of tasks represents the functionality

of system. After creation of graph, nods be sorted. The

topological order defines the position of tasks in graph.

Equivalent levels become for nodes in graph. This features of

tasks are used in scheduling algorithm. If tasks will be

scheduling according to levels in graph then it will assure

throwed of order constarints. The levels of tasks on following

graph were marked.

Fig. 3.5. Graph of tasks - levels of tasks after topological

sorting

The searching of graph is for partition of resources the next

step with the help of the algorithm the BFS [12]. The nodes

of graph are assigned equivalent indices. Indices these keep

the information relating the is parallel of tasks in graph. The

following drawing represents the levels of tasks formed in

result searching the graph with assistance of BFS.

3.2.1.2 Creation resources

On basis of data input, the representing the accessible

resources object be built (the processors). Object this throws

open the relating the resources information (the cost, the cost

of operating memory, times of executing on processors the

3

B

G

C

1

3
4

2

2

2

A

E

F

D

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 71
Volume 1, Issue 3, October 2010

tasks, averages the power consumptions, the relative speed of

processor, power relative consumption).

3.2.1.3 Creation population

They are the parameters of population:

 Number of clusters in population.

 Number of solutions in clusters,

 Graph of tasks - the functionality.

 Accessible resources.

 Criterion of alloy - defines the quantity of loop of

algorithm when the improvement of solution did not

happen.

Fig. 3.6. The indices of nodes after searching the grafu by the

BFS

 Map of costs - defines, which of criterions of optimization

will be the taken into account during finding the optimum

solution.

 Regard for universal processors the costs of operating

memory during optimizing cost.

 Maxiumum number of generations of evolving solutions

inside the clusters.

 Criterions of optimization - the maximum number of

processors, maximum cost, maximum time, power

maximum consumption.

 Size the best individuals' letters. Nodominated and the

best individuals to this list be recorded. They longer list

this algorithm can remember suddenly more individuals.

List behaves how queue FIFO.

The created objects of clusters and solutions in clusters, and

also objects hypersphere: processors and graph of tasks. The

created also the object of global temperature of algorithm.

The global algorithm "temperature" is initialized at this stage

as well.

3.2.1.4 Initialization hypersphere

Two hypersphere be created: processors and graph of tasks.

The hypersphere of processors has since 1 to 3 dimensions.

The dimension depends from number of optimized features

(cost, time, power consumption). Hypersphere for the graph

of tasks is two dimension.

3.2.1.5 Definitions of hyper sphere

 Filling multi-dimensional vectors with data defining a

given object (resources, tasks).

 Calculating the diameters of the hyper spheres, i.e. the

distance between the two most remote points and

determining the hyper sphere center on the basis of the

extreme coordinate.

3.2.1.6 Population initialization

 Clusters and solutions are initialized randomly.

 For every task, a resource capable of completing the task

is selected.

 If the resource is allocated, the algorithm proceeds to the

next task.

 A resource capable of completing the task is selected and

they are allocated.

3.2.1.7 Initializing the allocation of tasks to resources

 A vector of resources for allocation is taken for each task.

 Resource type and number are randomly assigned to the

tasks.

 Task scheduling by the ASAP (As Soon As Possible)

algorithm is initialized - eliminates the violations of

sequence limitations.

3.2.1.8 Solution evaluation

 The following are calculated: resource cost, task

completion time and power consumption; the cost is the

sum of allocated resources’ costs, the time of completed

tasks is the time of completing the tasks on all allocated

resources, power consumption is the sum of power inputs

taken by selected resources.

 If for an individual representing a solution any of the

optimized criteria exceeds the maximum value acceptable,

the individual is punished and the survival chances of a

punished individual diminish considerably.

 As the result of the above operations, we obtain a vector

containing the values of optimized criteria (time, cost,

power consumption).

 A solution ranking is determined (the rating of a given

solution is the number of solutions in a population which

do not dominate the solution).

 A solution is dominated if each of its costs is lesser from

or equal to the costs of the dominant solution (for

optimization in the Pareto sense) [5].

3.2.1.9 Cluster evaluation

The solution cluster ranking is created. The rating of

a cluster is the sum of the ratings of all solutions

within the cluster.

3.2.2 Resource selection

The input data for resource selection are the task graph, the

library of available resources and the optimization criteria,

and its goal is to partition tasks into the software and the

hardware part and to select resources for the realization of all

tasks consistent with the established optimization criteria.

The diagram of the algorithm of resource selection is showed

on Fig. 3.7.

5

C

B

G

0

6
3

4

2

1

A

E

F

D

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 72
Volume 1, Issue 3, October 2010

3.2.2.1 Cluster reproduction

Clusters are reproduced with the use of genetic

operators: crossing and mutation. At the reproduction

stage, the cluster population is doubled and its initial

size is restored at the elimination stage. This method

was introduced arbitrarily and ensures that within a

population some new individuals appear and fight for

survival with their parents. The mutation operator

creates one and the crossing operator two new

clusters. The likelihood of using either of the genetic

operators is defined by the algorithm parameters.

3.2.2.2 Genetic operators

The cluster mutation operator consists in mutating

allocation vectors in the following way: a cluster with

identical likelihood is picked at random and copied.

The number of the resource which will be mutated in

a new cluster is picked randomly Then, a number in

the 0-1 range is picked - if the number is smaller than

the global temperature, the resource is added,

otherwise it is subtracted. Adding resources is limited

by the maximum resource number parameter. At the

beginning of the algorithm operation, resources will

be added to the structure. As the algorithm

approaches the end of the run defined by the cooling

process, resources will be subtracted. This is aimed at

creating a cost-effective structure. The cluster

crossing operator consists in randomly picking two

clusters and copying them. Crossing is achieved

through cutting the resource hyper sphere with a

hyper plane. The information contained on "one side"

of the hyper plane is exchanged between clusters –

Fig. 3.8.

Fig. 3.7. Algorithm of resource selection

3.2.2.3 The algorithm for cutting the hyper sphere

with a hyper plane

 Determining the cutting hyper plane by picking n points

inside an n-dimensional hyper sphere.

 Creating a random permutation, e.g. for n = 3, the

permutation can be (2, 1, 3).

 Constructing the point displacement vector in respect to

the hyper sphere center; square coordinates are picked

consistent with dimension permutations, e.g. for three

dimensions with the permutation (2, 1, 3): y2 = rand() %

r2, x2 = rand() % (r2 – y2), z2 = rand() % (r2 – (y2 +

x2)), where: r – hyper sphere radius, and (x, y, z) are the

coordinates of the constructed point in a three-dimensional

space.

 The roots of square coordinates are calculated.

 A coordinate radical sign is picked.

 The hyper sphere center coordinates are added to the new

point resulting in obtaining a new point inside the n-

dimensional hyper sphere.

 The equation of the hyper plane cutting the hyper sphere is

calculated and the obtained system of equations is solved.

3.2.2.4 Saving the best solutions

After solution reproduction, a new procedure is called to save

the globally non-dominated solutions generated during

evolution. This procedure executes:

 Searches for non-dominated solutions in the present

generation.

 Creates the ranking of the best solutions saved so far and

in the present generation.

 Saves the non-dominated solutions from both the "old"

and the "new" solutions.

 Deletes the solutions saved in the past if they were

dominated by new solutions; if there are more than one

solution whose all optimized criteria values are identical,

only one of those solutions is saved (the "newest" one).

 If the new solutions dominated none of the ones saved in

the past, the population was not improved.

 The number of non-dominated solutions that the algorithm

can save is defined by an algorithm parameter.

Fig. 3.8. The crossing operator with the hyper plane

3.2.2.5 Cluster evaluation

At this stage of the algorithm, half the individuals are

removed from the population. The initial number of

individuals is restored. The elimination of individuals is

carried out using Boltzmann tournament selection strategy.

[Criterion of stop]

Reproduction of

clusters

Evolution of solutions

inside the clusters

Optimization of resource

selection

Result of

algorithm

Algorithm

initialization

Hyper plane

2

1

4

5

6

3

7

hypersphere

○ crossing with changes ● crossing without changes

The area of features of resource

 (time, cost, power consumption).
i

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 73
Volume 1, Issue 3, October 2010

3.2.2.6 Boltzman tournament

The calculations of following equation the winner of

tournament be appeared on basis of result:

1 e

r1 r2()

T








 (3)

where:

 r1 - ranking of first solution

 r2 - ranking of second solution

 T - global temperature

They are values of this function the number from

compartment from < 0,1 >. We draw in aim delimitations the

winner of tournament number from compartment (0,1). If she

is larger from enumerated number with example then

individual about ranking is winner r1. Second individual in

opposite incident winner is (about ranking r2) [1].

It the analysis of results of tournament was it been possible

was to conduct on basis of graph of function (Fig. 3.9.):

1 e
x

  1

 (4)

where:

x =
r1 r2()

T (5)

Fig. 3.9. The chart of probability of victory Boltzman

tournament in dependence from global temperatur

If r1 < r2 this x is negative and for high temperature larger

probability exists ,that individual about rank r1 will win

tournament than for lower temperatures. For low

temperatures winner the most often will be individual about

rank r2.

If r1 > r2 this x is positive and for high temperature larger

probability exists ,that individual r2 will win tournament than

for lower temperatures. For low temperatures winner the

most often will be individual about rank r1.

3.2.2.7 Report of algorithm

If the quantity of generations individuals' improvement

during which did not happen, crosses the broadcast in

criterion of alloy quantity, algorithm finishes his working.

The dominated osobniki in scale of whole evolution become

considered in report.

3.3 Scheduling of tasks

Task scheduling is aimed at minimizing the schedule length

(the total tasks completion time).

3.3.1 Algorithm initialization

The scheduling algorithm initialization resembles the

initialization of resource selection algorithm. The difference

is that there is solely one cluster in which solutions evolve.

The cluster allocation remains unchanged during the

algorithm's run because all the resources are known for the

task scheduling algorithm.

3.3.2 Algorithm of task scheduling

The diagram of the algorithm of task scheduling is showed on

Fig. 3.10.

3.3.3 Solution reproduction

Solutions are reproduced using the genetic operators:

crossing and mutation. Solutions are reproduced until their

number doubles (the number of new solutions has been

chosen arbitrarily).

The mutation operator produces one and the crossing

operator two new solutions. The likelihood of using either of

the genetic operators is defined by the algorithm parameters.

Fig. 3.10. Algorithm of task scheduling

3.3.4 Genetic operators

 The mutation operator of task allocation to resources

acts in the following manner: a solution is randomly

selected and copied. Then, the number of tasks in the

system is multiplied by the global temperature. When the

global temperature is high, the number of tasks changed in

the allocation to resources will be greater than that in later

stages of the evolution. Tasks are picked at random and

allocated to resources.

 The schedule mutation operator acts in the following

manner: if due to the mutation operation of task allocation

to resources, the resource the task had been running on

was changed, then the task is removed from the schedule

for the "old" resource and boundaries are set on the new

resource schedule between which the task may be

[Criterion of stop]

Reproduction of

solutions

Evaluation of

solutions

Optimization of task

scheduling

Result of

algorithm

Algorithm

initialization

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 74
Volume 1, Issue 3, October 2010

allocated. A location within the boundaries is picked and

the task is allocated.

 The crossing operator of task allocation to resources

resembles cluster crossing, however, the task graph hyper

sphere is used for that purpose.

 Schedule crossing operator acts in the following way –

after the allocations have been crossed, a map is created

defining which parent a given feature of an offspring

comes from. The offspring stores the allocation vector

(obtained after crossing task allocations to resources) and

the empty vector of lists with schedules of tasks on

available resources. The algorithm analyzes the tasks by

checking their position on the graph. For all tasks in one

position, the resources on which the tasks will be

performed (defined by the vector of allocation to

resources) are put on the list. If in a position there is only

one task ran on a given resource, the task is entered into

the resource schedule, otherwise the tasks are sorted

according to the starting time they had in the parent and

are placed in the schedule in ascending order.

3.3.5 Solution evaluation, saving the best solutions

and solution elimination

They are the same algorithms which were employed in the

resource distribution algorithm. Analogical solutions are

eliminated using Boltzmann tournament selection strategy

[1].

3.3.6 Algorithm report

If within the number of generations determined by the

annealing criterion a better individual did not appear, the

evolution is stopped and the evolution report is created. The

result of the algorithm operation is a set of non-dominated

individuals (in the scale of the whole calculation process).

3.4 Coherent resource partition and task scheduling

The diagram of the algorithm of the coherent resources

selection and tasks scheduling according to genetic approach,

is showed on Fig. 3.11. The initialization of the coherent

synthesis algorithm resembles the initialization of resource

selection algorithm. The input parameters are the number of

clusters in the population and the number of solutions in

clusters. Solution clusters represent the structures sharing the

same resource allocation, but with different task allocation to

resources and different schedules.

The outer loop of the algorithm (realizes resource selection)

is ran until the number of generations without population

improvement is exceeded. This value is defined by the

annealing criterion parameter. There are few outer loops at

the beginning of the algorithm operation.

The number of iteration of internal loop algorithm be definite

(Fig. 3.12.):

f x() k e
a x 3 k

 (6)

where the k - the parameter of algorithm,

a - the annealing parameter.

Argument x with < 0, n >, he in every generation be enlarged

about step of temperature.

N - value near which temperature is levels 0.00001.

Their number grows until it reaches the value of k with the

falling of the temperature. Fewer task allocations and

scheduling processes are performed at the beginning. When

the temperature falls sufficiently low, each inner loop has k

iterations. The number of iterations may be regulated with

the temperature step parameter. The greater the step, the

faster the number of inner iterations reaches the k value.

3.5 Computational experiments

3.5.1 The comparison coherent and non coherent

synthesis with genetic algorithm. The results for

tasks of dependent and nonpreemptive without

cost of operating memory.

We present the analytical results obtained by testing the

presented algorithms. In the tests represented by the tables

and flowcharts below, we compared the results from the

incoherent and coherent synthesis.

3.5.1.1 Minimize of cost

[Criterion of stop]

Reproduction

of clusters

Reproduction

 of solutions

Optimization of

 resource partition

Result of

algorithm

Evaluation of solutions

Optimization of

task scheduling

Evaluation of clusters

[Criterion of stop]

Algorithm

initialization

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 75
Volume 1, Issue 3, October 2010

Fig. 3.11. The coherent synthesis of computer

system – genetic approach

Fig. 3.12. Graph f(x) for k = 100

Table 3.1.

Tasks dependent. Minimum of cost.
Number
of task

Non-coherent Coherent

Cost Time Cost Tim
e

Power consumption

5 1.0 5.67 1.0 5.67 11.68

10 1,25 7.75 1.25 7.75 28.94

15 1.5 8.4 1.5 8.3 54.42

20 1.5 11.4 1.5 8.4 42.64

25 1.5 14.2 1.5 14 80.18

30 1.5 17.6 1.5 17.5 103.12

35 2.5 15.75 2.5 12.5 101.04

40 2.5 18.25 2.5 12.1 129.17

45 2.5 19,5 2.5 19.4 126.95

50 2.75 19.4 2.75 15.9 124.67

55 2.75 18 2.75 14.7 147.32

3.5.1.2 Minimize of time

Table 3.2.

Tasks dependent. Minimum of processing time.
Number
of task

Non-
coherent

Coherent

 Cost Time Cost Time Power
consumption

5 1.00 5.57 1.8 5 26,57

10 1.80 7.40 1.8 7.45 31,98

15 3.5 7.70 3.1 6,9 73,59

20 3.6 8.65 3.7 7.1 97,63

25 4.2 7.95 3.9 7,7 105,13

30 4.1 9.20 2.9 7.8 121,14

35 5.6 8.45 5.5 7.77 158,2

40 7.1 8.65 6.35 7.7 168,82

45 8.6 8.6 5.1 5.5 230.11

50 8.4 8.65 7.3 7.45 190.64

55 9.51 9.53 7.7 7.95 222.78

3.5.1.3. Charts

Chart 3.1.

Minimum cost

0

10

20

30

5 10 15 20 25 30 35 40 45 50 55

Number of tasks

T
im

e

non-coherent coherent

During cost optimization, both algorithms yielded similar

cost values for all tested task sets. However, the coherent

algorithm improved time optimization for graphs exceeding

30 tasks. For 50 tasks it achieved a 15% improvement of the

task completion time Chart 3.1.

Chart 3.2.

Minimum processing time

0

2

4

6

8

10

5 10 15 20 25 30 35 40 45 50 55
Number of tasks

C
o
st

non-coherent coherent

Chart 3.3.

Minimum processing time

0

2

4

6

8

10

5 10 15 20 25 30 35 40 45 50 55

Number of tasks

T
im

e

non-coherent coherent

When the flowchart reflecting the dependence of time from

the number of system tasks is considered (Chart 3.2), time

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 76
Volume 1, Issue 3, October 2010

minimization is comparable for both algorithms.

Nevertheless, once the chart showing the interdependence of

cost and the number of tasks is analyzed (Charts 3.3), it is

clear that the solutions yielded by the coherent algorithm are

far less expensive than those from the incoherent algorithm.

The coherent algorithm achieves similar task completion

times in solutions much cheaper from those found by the

incoherent algorithm.

3.5.2. The comparison coherent and non coherent

synthesis with genetic algorithm. The results for

tasks of dependent and nonpreemptive with cost

of operating memory.

3.5.2.1 Minimize of cost

Table 3.3.

Tasks dependent. Minimum of cost.
Number
 of task

Non-
coherent

Coherent

Cost Time Cost Time Power
consumption

10 1.9 7.27 1.5 7.6 35.47

20 2.25 11.99 2 12.25 40.17

30 2.25 15.33 2.25 15.4 86.39

40 2.5 18.67 2,5 18.66 111.1

50 2.75 20.6 2.73 20.25 166.87

60 3,25 29.25 2.7 17.8 242.29

70 2.5 32 2.5 32 201.29

80 2.75 28.8 2.39 28.8 380.28

90 2.25 48.25 2.25 42.1 247.93

100 2.6 45.6 2.2 45.6 311.85

110 2.6 56.2
5

2.2 50.4 320.98

3.5.2.2 Minimize of time

Table 3.4.

Tasks dependent. Minimum of time.
Number
 of task

Non-coherent Coherent

Cost Time Cost Time Power
consumption

10 1.2 13.95 1.5 9.8 30.77

20 2.5 19.29 2.2 15.,9
5

59.64

30 3.67 15.45 3.3 12.25 107.22

40 4.4 15.85 4.4 13.45 159.94

50 5.5 15.8 5.1 15.05 197.36

60 5.6 21.45 5.7 13.45 252.37

70 7.3 20.15 7.7 16.40 340.48

80 7.6 17.45 7.2 16.3 242.51

90 8.5 24.45 7.7 20.15 302.94

100 10 19.75 7.9 18.85 358.76

110 10.3
3

24.8 9.1 20.8 421.98

3.5.2.3 Charts

Chart 3.4.

Minimum cost

0

0,5

1

1,5

2

2,5

3

3,5

10 20 30 40 50 60 70 80 90 100 110

Number of tasks
C

o
st

non-coherent coherent

Chart 3.5.

Minimum cost

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110

Number of tasks

T
im

e

non-coherent coherent

Chart 3.6.

Minimum time

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100 110
Number of tasks

C
o

st

non-coherent coherent

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 77
Volume 1, Issue 3, October 2010

Chart 3.7.

Minimum time

0

10

20

30

10 20 30 40 50 60 70 80 90 10
0

11
0

Number of tasks

T
im

e

non-coherent coherent

The coherent algorithm improved time optimization. The

solutions yielded by the coherent algorithm are far less

expensive, as well. During minimization of time the got

architectures are complex and then the scheduling algorithm

has the larger possibilities for optimization. This is

consequence of this that coherent algorithm gets better results

than non-coherent algorithm.

3.5.3. Mult-icriterions optimization. The optimization of

time of executing, power consumption and cost.

Results for dependent tasks.

Tests were conducted for nonpreemptive and dependent

tasks. Parameters of constraints: the maximum number of

processors - 5, maximum cost - 3, maximum time 25.

Optymalizowane simultaneously. It the area of optimum

solutions in result was received was in sense Pareto [166].

The following tables presented solutions (in Pareto area) for

the cost, time and power consumption and solution

"compromissing". Searching space of solutions be led to time

when global temperature reached value 0.01.

3.5.3.1 Minimize of cost

Tab. 3.5.

Multi-criterions optimization. Minimum of cost.
Number
of tasks

Coherent synthesis

Cost Time Power
consumption

5 0.5 17 6.47

10 0.75 15.5 15.6

15 1.5 8.4 54.42

20 1 19 42.64

25 2 15.75 48.51

30 2.25 18.4 70.51

35 1.5 20.8 114.05

40 2.75 17.75 104.68

45 2.25 24.67 102.02

50 2.25 24.25 108.48

55 2.5 25 164.58

3.5.3.2 Minimize of time

Tab. 3.6.

Multi-criterions optimization. Minimum of time.
Number
 of tasks

Coherent synthesis

Cost Time Power
consumption

5 1.75 4.25 9.56

10 3 3.6 35.47

15 2.75 4.2 77.69

20 1.75 12.33 37.21

25 2 12.25 52.24

30 2.25 14.9 92.18

35 2.75 10.4 173.83

40 2.75 12.6 203.57

45 2.75 14.8 230.11

50 2.75 16.3 242.29

55 2.7
5

18 268.59

3.5.3.3 Minimize of power consumption

Tab. 3.7.

 Multi-criterions optimization. Minimum of power

consumption.
Number
of tasks

Coherent synthesis

Cost Time Power
consumption

5 1.75 14.75 6.28

10 2.5 23 12.57

15 2.95 18.5 20.9

20 1.75 21 28.78

25 2.5 23 40.46

30 2.75 24.6 54.73

35 3 13.33 78.3

40 2.75 15.85 112.03

45 2.25 24.67 95.44

50 2.25 24.5 105.99

55 2.5 25 164.58

3.5.3.4 Compromissing solution

Tab. 3.8.

Multi-criterions optimization. Compromissing solution.
Number
of tasks

Coherent synthesis

Cost Time Power
consumption

5 1.75 6.75 9.26

10 1,5 6.2 35.47

15 2.95 15.5 24.01

20 1.75 12.83 35.45

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 78
Volume 1, Issue 3, October 2010

25 2 14.5 51.25

30 2.75 16.9 63.58

35 2 18 78.3

40 2.75 17.75 104.68

45 2.25 21.75 99.5

50 2.25 23.88 113.26

55 2.5 25 164.58

3.5.3.5 Charts

Chart. 3.8.

Multicriterions optimization

0

0,5

1

1,5

2

2,5

3

3,5

5 10 15 20 25 30 35 40 45 50 55
Number of tasks

C
o

st

minimum of cost

minimum of time

minimum of power consumption

compromissing solution

Chart. 3.9.

Multicriterions optimization

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55
Number of tasks

T
im

e

minimum o cost

minimum of time

minimum of power consumption

compromissing solution

Chart. 3.10.

Muticriterions optimization

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50 55

Number of tasks

P
o
w

er
 c

o
n
su

m
p
ti
o
n

minimum of cost

minimum of time

minimum of power consumption

compromissing solution

3.5.4. Multi-criterions optimization. The optimization of

time of executing, power consumption and cost.

Results for dependent tasks with cost of operating

memory.

Tests were conducted for nonpreemptive and dependent

tasks. Parameters of constraints: the maximum number of

processors - 5, maximum cost - 3, maximum time 25,

optimized simultaneously. It the area of optimum solutions in

result was received was in sense Pareto. The following tables

presented solutions (in Pareto area) for the cost, time and

power consumption and solution "compromissing".

Searching space of solutions be led to time when global

temperature reached value 0.01.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 79
Volume 1, Issue 3, October 2010

3.5.4.1 Minimize of cost

Tab. 3.9.

Multi-criterions optimization. Minimum of cost.
Numbe

r
of tasks

Coherent synthesis

Cost Time Power
consumption

10 5.5 1.9 56.07

20 1.5 18,5 33.15

30 5.9 23 82.41

40 1.5 50 81.73

50 1.25 45.5 137.2

60 2.75 22 299.61

70 2.5 44.67 158.2

80 2.25 47 179.99

90 4.25 33.8 311.6

100 5.25 46 291.7

110 4.2
5

47 431.76

3.5.4.2 Minimize of time

Tab. 3.10.

Multi-criterions optimization. Minimum of time.
Number
 of tasks

Coherent synthesis

Cost Time Power
consumption

10 6.5 1.9 43.61

20 2.75 7.3 105.25

30 5.9 23 82.41

40 7 20.67 111.88

50 4.25 13.4 205.63

60 4.25 16.2 257.48

70 2.5 32 175.24

80 3.25 31 189.78

90 4.25 22.2 393.7

100 5.75 20.06 390.77

110 5.5 20.1 558.53

3.5.4.3 Minimize of power consumption

Tab. 3.11.

Multi-criterions optimization. Minimum of power

consumption.
Number
of tasks

Coherent synthesis

Cost Time Power
consumption

10 6.5 6.67 23.93

20 1.5 18,5 33.15

30 7.7 45 54.44

40 1.5 50 81.73

50 1.25 45.5 137.2

60 4.25 21.8 225.56

70 2.5 32 175.24

80 2.25 47 179.99

90 4.25 33.8 311.6

100 5.25 46 291.7

110 4.3 49 429.31

3.5.4.4 Compromissing solution

Tab. 3.12.

Multicriterions optimization. Compromisssing solution.
Number of

tasks
Coherent synthesis

Cost Time Power
consumption

10 6.5 2 37.99

20 1.5 18,5 33.15

30 5.9 23 82.41

40 7 23 121.56

50 4.25 16.2 186.05

60 2.5 32 175.24

70 2.5 38 167.59

80 3.25 37 183.67

90 4.25 28.6 328.73

100 6.75 30.33 336.36

110 4.25 41.8 435.77

3.5.4.5 Charts

Chart 3.11.

Multicriterions optimization

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100 110

Number of tasks

C
o

st

minimum of cost

minimum of time

minimum of power consumption

compromissing solution

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 80
Volume 1, Issue 3, October 2010

3.6 Conclusions

This graphs presented of multicriterions optimizationform

coherent synthesis of computer system. The designer in result

of working of algorithm receives in sense the gathering of

optimum solutions Pareto. It stays with the designer's task the

selection the most answering his requirements of solution. In

dependence from this what are for system requirements it was

it been possible to lean on one of got results. To to get to

know for given authority of problem the specific of space of

solutions well, important the use is long the list of

remembering the best solutions (in tests the parameter of

algorithm "it quantity the best” it was established was value

50). Important the settlement of slow refreshing the algorithm

is equally (the parameters "the step of temperature” 0.1 and

"the coefficient of cooling” - in dependent on from quantity

of tasks in system; generally smaller than 0,05). We prevent

thanks this sale large convergence in population [79], [98].

The algorithm searches near smaller temperature, the larger

area in space of solutions. It it was noticed was also that the

larger probability of mutation helps the finding the better

architecture of system, and the larger probability of crossing

improves the optimization of temporary criterion.

Chart. 3.12.

Multicriterions optimization

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110
Number of tasks

T
im

e

minimum of cost
minimum of time
minimum of power consumption
compromissing solution

Chart 3.13.

Multicriterions optimization

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110

P
o
w

er
 c

o
n
su

m
p
ti
o
n

minimum of cost

minimum of time

minimum of power consumption

compromissing solution

Number of

tasks

3.7 Example coherent synthesis’s applied

3.7.1 Specification of system

We assume, that algorithm of coherent synthesis has to

design computer system described on this graph of tasks –

Fig. 3.13. We have pools of available resources:

Tab. 3.13.

Available resources
ID Type Cost Cost of

memory
Power

consumption

P1 universal 1 0.15 0.001

P2 universal 1.5 0.2 0.002

A1 dedicate
d

0.7 0 0.001

A2 dedicate
d

0.9 0 0.002

Fig. 3.13. Graph of tasks

In other requirements and constraints of system are

following:
Tab. 3.14.

Times of tasks’s processing.

If 0 - processor does not be adapted to realization of this

task.

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z10

Z9

Z11

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 81
Volume 1, Issue 3, October 2010

Tasks Processors

 P1 P2 A1 A2

Z0 2 1 3 2,5

Z1 4 2 1,5 0

Z2 2 1 3.5 3

Z3 4 2 0 0

Z4 5 2,5 0 0

Z5 6 3 2 1

Z6 3 1,5 0 0

Z7 2 1 0 0

Z8 1 0,5 0 0

Z9 4 2 0 1

Z10 2 1 0,5 0,4

Z11 2 1 0,5 0,4

Tab. 3.15.

Power consumption of tasks’s processing.

If 0 - processor does not be adapted to realization of this

task.
Tasks Processors

P1 P2 A1 A2

Z0 1 1,5 1,5 1,5

Z1 2 3 1 0

Z2 1 1,5 2 2

Z3 2 3 0 0

Z4 2,5 3,5 0 0

Z5 3 4,5 2 1,5

Z6 1,5 3 0 0

Z7 1 2 0 0

Z8 0,5 1 0 0

Z9 2 3 0 1,5

Z10 1 2 0,7 0,6

Z11 1 2 0,7 0,6

Processor P2 is quicker from processor P1 but processor P2

takes more power and is dearer than P1. Dedicated processor

A1 can realize tasks Z0, Z1, Z2, Z5, Z10 and Z11 and he is

adequate for tasks: Z5, Z10 and Z11. Task Z0 and Z2 can be

executed on this processor but time of their realization is

longer than on universal processors. This processor is

cheaper from dedicated processor A2, but the power

consumption has greater. Dedicated processor A2 is adequate

for execution of tasks Z5, Z9, Z10 and Z11. This processor is

insufficient for tasks Z0 and Z1 than universal processors,

but more suitable than processor specialized A1. The cost of

processor A2 is greater than processor A1.

3.7.2 Results of optimization

Simplifying of analysis we assume that four is the maximum

number of processors.

3.7.2.1 Minimize of cost (without of cost of memory)

Fig. 3.14. Minimize of cost without of cost of memory

Tab. 3.16.

Minimize of cost without of cost of operating memory
Cost Time Power

consumption

1 37 18,5

We for obvious reasons in this example have consisting

system from one and the cheapest universal processor.

Dedicated processors, which are cheaper possibilities of

realization of all tasks have not in this system.

3.7.2.2 Minimize of cost (with of cost of memory)

Fig. 3.15. Minimize of cost (with of cost of memory)

Tab. 3.17.

Minimize of cost (with of cost of operating memory)
Cost Time Power

consumption

2,6 23,5 17,4

We for this example will receive system folded from one

universal processor (cheaper) as well as one dedicated

processor (cheaper). Here two processors more suitable is

apply. Cost of realization of all tasks on the cheapest

universal processor is equal 2,8 (the cost of processor and 12

the tasks the by 0,15 cost of unit of memory).

3.7.2.3 Minimize of processing time

Fig. 3.16. Minimize of processing time

Tab. 3.18.

Minimize of processing time
Cost Time Power

consumption

6 6,3 21,2

For example in which in have the minimization of time is

generated system, which are two quicker universal processors

and two dedicated processors A1 and A2. Algorithm counted

schedule in which processors A1 and A2 executed tasks for

which they are dedicated.

3.7.2.4 Minimize of power consumption

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 82
Volume 1, Issue 3, October 2010

Fig. 3.17. Minimize of power consumption

Tab. 3.19.

Minimize of power consumption
Cost Time Power

consumption

4,65 14,8 14,7

For this example algorithm generated system folded from two

cheaper dedicated processors for which the power

consumption is the lowest for almost all tasks. Task Z1 was

executed on processor A1 because executing this task

processor A1 is dedicated. Task Z10, Z5, Z9 and Z11 are

executed on dedicated processor A2 on which is smallest the

power consumption.

3.7.2.5 Minimize of time and cost (for given maximum

of cost)

 Maximum cost was given on value 4.

Fig. 3.18. Minimize of time and cost. Cheaper system.

Tab. 3.20.

Minimize of time and cost. Cheaper system.
Cost Time Power

consumption

3,4 13,5 23.4

3.19. Minimize of time and cost. Quicker system.

Tab. 3.21.

Minimize of time and cost. Quicker system.
Cost Time Power

consumption

3,8 10,8 23,2

Fig. 3.20. Minimize of cost and time. The cheapest system.

Improvement of time.

Tab. 3.22.

Minimize of cost and time. The cheapest system.

Improvement of time.
Cost Time Power

consumption

2,6 22,5 17,4

Algorithms for multicriterions optimization receive the area

of optimum solutions in sense Pareto. First and second

solution have the costs greater than settled the maximum as

well as have larger time from minimum time of system.

However they find among these conflicting requirements

compromise. First of solutions is cheaper since second about

0,4. The time of realization of tasks is longer about 2,7. The

power consumption is lower for dearer system. The solution

for last case is about the smallest of cost and other criterions

are simultaneously estimated. Solution this has the same cost

how the cheapest system (solution for minimize of cost) and

schedule length about 1 reduces simultaneously.

3.7.2.6 Minimize of cost and power consumption (for

given maximum of time)

The maximum of time was given on value 20.

Fig. 3.21. Minimize of cost and power consumption.

Maximum time equal 20. Cheaper system.

Tab. 3.23.

Minimize of cost and power consumption. Maximum time

equal 20.

Cheaper system.
Cost Time Power

consumption

3,5 19,8 15,2

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 83
Volume 1, Issue 3, October 2010

Fig. 3.22. Minimize of cost and power consumption.

Maximum time equal 20. Dearer system.

Tab. 3.24.

Minimize of cost and power consumption. Maximum time

equal 20.

Dearer system.
Cost Time Power

consumption

3.65 19.3 14.7

Criterion of time was the requirement for resultant of system:

he had to finish the executing the tasks before 20 units of

time. Other criterions have be optimized: i.e. time and cost.

Algorithm generated two optimum solutions in sense Pareto.

System for first solution executed tasks to 19,8 units of time,

has the larger power consumption and his cost is smaller.

Systems these differ of the execution of task Z0, only. In first

system this task is executed through dedicated processor,

which has larger power consumption and he need not

additional operating memory. Execution of this task through

universal processor P1 has smaller of the power consumption

and he need to execution of task the additional memory. The

second solution generated system for which time executing

all tasks is shorter.

3.7.2.7 Multicriterions optimalization. Coherent

minimize of cost, time and power consumption

(for given maximum of time).

Maximum of time was given on value 15.

Fig. 3.23. Minimize of cost, time and power consumption.

Cheaper system.

Tab. 3.25.

Minimize of cost, time and power consumption. Cheaper

system.

Cost Time Power
consumption

3,4 14,5 23,4

Fig. 3.24. Minimize of cost, time and power consumption.

Cheaper system. System with optimized power consumption.

Tab. 3.25

Minimize of cost, time and power consumption. Cheaper

system.

System with optimized power consumption.
Cost Time Power

consumption

4,9 14,5 17,9

The algorithm generated area of optimum solutions in sense

Pareto for three criterions. Generated solutions get the

different compromise among conflicting criterions. Two

systems to analysis were chosen. Finish execution time for all

of tasks is 14,5 unit. First system consists with 2 processors

and his cost is small. However executing of tasks on

processor P2 causes the power consumption considerable

[73]. The dedicated processor executes the tasks with smaller

power consumption than processor A2. Task Z2 is except.

Realization of this task on processor P2 would cause the

crossing the limit of time. Second system consists with 4

processors. This system is dearer (150%) however the power

consumption reduces significantly and the limit of time of

realization tasks fulfils simultaneously.

4. Résumé

The paper describes genetic algorithms and their

implementation flowcharts. Moreover, it presents selected

results of analytical experiments for resource selection and

task scheduling. The paper explores the coherent synthesis

algorithm of computer systems, in which resource selection

and task scheduling optimization processes are realized

concurrently and coherently. The coherent approach in the

synthesis generates common and interdependent solutions

regarding the system structure (type and configuration of the

selected resources), as well as the scheduling of tasks ran on

those resources. In the presented approach, the cost of

resources (system cost), the time of completing all tasks

(system speed) and the power consumption of the system are

optimized. The coherent algorithm yields much (up to 40%)

better solutions, which is proved by analytical experiments.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 84
Volume 1, Issue 3, October 2010

References

[1] Aarts E.H.L. Korst J., “Simulated Annealing and

Boltzmann Machines”, J. Wiley, Chichester, 1989.

[2] D’Ambrioso J., Hu X., “Configuration Level

Hardware/Software Partitioning for Real-Time Systems”,

Proc. of the Int. Workshop on Hardware/Software Codesign,

Vol. 14, 34-41, 1994.

[3] Axelson J., “Architecture Synthesis and Partitionig of

Real-Time Systems: A Camparison of Three Heuristic Search

Strategies”, Proc. of the Int. Workshop on

Hardware/Software Codesign, 161-165, 1997.

[4] Błażewicz J., Ecker K., Pesch E., Schmidt G., Węglarz J.,

“Handbook on Scheduling, From Theory to Applications”,

Springer-Verlag Berlin Heidelberg, 2007.

[5] Błażewicz J., Ecker K., Plateau B., Trystram D.,

“Handbook on Parallel and Distributed Processing”, Spinger-

Verlag, Berlin – Heidelberg, 2000.

[6] Brucker P., Knust S., “Complex Scheduling”, Springer,

2006.

[7] Coffman E. G., Jr., “Computer and Job-shop scheduling

theory”, John Wiley&Sons, Inc. New York, 1976.

[8] Dick R. P., Jha N. K., MOGAC: “A Multiobjective

Genetic Algorithm for the Cosynthesis of Hardware-Software

Embedded Systems”, Proc. of the Int. Conference on

Computer Aided Design, 522-529, 1997.

[9] Drabowski M., M., Rola M, Roślicki A., ”Algorytmy

neuronowe w sterowaniu rozdziałem zadań i zasobów w

kompleksie operacji”, 2rd International Congress of

Intelligent Building Systems, INBus2002, Kraków, 45-52,

2002.

[10] Drabowski M., Czajkowski K., “Task scheduling in

coherent, co-synthesis of computer system”, Advanced

Computer Systems – Computer Information Systems and

Industrial Management Application (ACS-CISIM 2005), in.

Image Analysis, Computer Graphics, Security Systems and

Artificial Intelligence Applications, vol. 1, 53-60, 2005.

[11] Drabowski M., “Par-synthesis of multiprocessors

parallel systems”, International Journal of Computer Science

and Network Security, Vol. 8, No. 10, 90-96, 2008.

[12] Eiben A.E. Aarts E.h.l. van Hee K.H., “Global

convergence of genetic algorithms: A Markov chain

analysis”, LNCS 496, 4-9, 1991.

[13] Gajski D.D., Dutt N.D., Wu A.C.H., Lin S.Y., “High-

level Synthesis. Introduction to Chip and System Design”,

Kluwer Academic Pub., Boston, MA, 1994.

[14] Gajski D., “Principles of Digital Design”, Prentice Hall,

Upper Saddle River, NJ, 1997.

[15] Garey M. R., Johnson D. S., “Computers and

intractability: A guide to the theory of NP-completeness”,

San Francisco, Freeman, 1979.

[16] Gupta R.K., De Micheli G., “Hardware-Software Co-

synthesis for Digital Systems”, IEEE Design&Test of

Computers, Vol. 10, No. 3, 29-41, 1993.

[17] Harel D., Statecharts: “A Visual Formalism for

Complex Systems”, Science of Computer Programming, Vol.

8, No. 3, 231-274, 1987.

[18] Henkel J., Ernst R., “High-Level Estimation Techniques

for Usage in Hardware/Software Co-Design”, Proc. of the

Asia and South Pacific Automation Conference, 353-360,

1998.

[19] de Micheli G., “Computer-Aided hardware-Software

Codesign”, IEEE Micro, Vol. 14, No. 4, pp. 10-24, 1994.

[20] Schulz S., Rozenbilt J.W., Mrva M., Buchenrieder K.,

“Model-Based Codesign”, IEEE Computer, Vol. 31, No. 8,

60-67, 1998.

[21] Sgroi M., Lavagno L., Sangiovanni-Vincentelli A.,

“Formal Models for Embedded System Design”, IEEE

Design&Test of Computers, Vol. 17, No. 2, 14-27, 2000.

[22] Steinhausen U., “System Synthesis Using

Hardware/Software Codesign”, Proc. of the Int. Workshop

on Hardware-Software Co-Design, 1993.

[23] Teich J., Blickle T., Thiele L., “An Evolutionary

Approach to System-Level Synthesis”, Proc. of the Int.

Workshop on Hardware/Software Codesign, 167-172, 1997.

[24] Węglarz J., “Project Scheduling – Recent Models,

Algorithms and Applications”, Kluwer Academic Publ.,

1999.

[25] Węglarz J., ”Sterowanie w systemach typu kompleks

operacji”, PWN, PAN, Oddział w Poznaniu, 1981.

 Author Biographies

Mieczyslaw Drabowski, Assistant

Professor of Department of Computer Engineering, Faculty of Electrical and

Computer Engineering, Cracow University of Technology, received the M.

Sc. degree in automatic control and communication from AGH University

of Science and Technology, graduated mathematic from Jagiellonian

University in Krakow and received the Ph. D. degree (with honors) in

computing science from Poznan University of Technology, in 1977, 1979

and 1986, respectively.

Currently he is member of several editorial boards, among others

International Association for Development of the Information Society

(IADIS), International Association of Science and Technology for

Development (IASTED) on Artificial Intelligence and Soft Computing,

International Journal of Computer Science and Emerging Technologies.

His research interests include schedule, assignment and allocation for tasks

and resources, dependable and fault tolerant systems, artificial intelligence,

operating systems and software engineering, author and co-author of 3

monographs and over 80 papers in major professional journals and

conference proceedings.

Dr. Drabowski is a member of the council of the Polish Information

Processing Society.

